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Abstract 

 

Project Aptos aimed to develop a modular, canard controlled active stability system for 

a sounding rocket. This report focuses specifically on the development of the control 

algorithms used to command the system. An introduction to the project aims and 

objectives is given, specifically relating to the key stakeholders in the project: the Leeds 

University Rocketry Association (LURA) and Collins Aerospace. Relevant literature is 

discussed and existing work on control systems for orbital rockets, sounding rockets, 

and missile systems is drawn upon. 

A three degree of freedom rotational model of a canard-controlled sounding rocket is 

derived and subsequently modelled using MATLAB and Simulink. These equations of 

motion are linearised using first order Taylor series techniques and small angle 

approximations, and a linear quadratic regulator (LQR) system is designed to control 

the rocket’s attitude during ascent.  

A separate PID controller is implemented to improve the performance of servomotor 

position control such that it meets the system requirements. The MATLAB System 

Identification app is then used to fit a transfer function model to the servomotor step 

response data, allowing for accurate modelling within Simulink. 

The control system’s performance is analysed, and it is proven that performance is 

sufficient for test flights to commence. The system’s robustness is investigated over a 

range of expected variations in the rocket’s geometry using a Monte Carlo approach. 

Finally, the Chernoff bound is applied in order to prove 95% accuracy and confidence 

in the system’s performance and stability robustness.  
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Nomenclature 

 

Symbols 

𝛼 Angle of attack 

𝐴𝑟𝑒𝑓  Reference area (rocket cross-sectional area) 

𝐵 Body frame of reference 

𝛽 Sideslip angle 

𝐶1 Corrective moment coefficient 

𝐶2 Damping moment coefficient 

𝐶𝑑𝑝  Roll damping moment coefficient derivative w.r.t roll rate 

𝐶𝑁𝛼0  Normal force coefficient derivative of fin 2D aerofoil 

𝐶𝑁𝛼 Normal force coefficient derivative w.r.t. angle of attack 

𝐶𝐿  Lift coefficient 

𝐶𝐿𝛼 Lift coefficient derivative w.r.t angle of attack 

𝑑𝑏𝑜𝑑𝑦 Body tube diameter 

𝐝 Disturbance vector, {𝛼 𝛽} 𝑇 

𝛿 Robustness analysis confidence = 1 − 𝛿 

𝜖 Robustness analysis accuracy  

𝐹 Canard lift force, e.g. 𝐹𝑥1  for canard 𝑥1 

𝐺 Global frame of reference 

I𝑛 𝑛 × 𝑛 identity matrix 

𝐽𝑅 Radial mass moment of inertia 

𝐽𝐿 Longitudinal mass moment of inertia 

J Mass moment of inertia matrix, {𝐽𝑅 𝐽𝐿 𝐽𝐿}
 𝑇 ⋅ I3 

K LQR gain matrix 

𝐾𝑝 Proportional gain (PID controller) 

𝐾𝑖 Integral gain (PID controller) 

𝐾𝑑  Derivative gain (PID controller) 

𝐿𝑑𝑎𝑚𝑝 Damping moment about roll axis 

𝐿𝑐𝑎𝑛 Moment induced by the canards about the roll axis 

𝐿𝛼 Canard roll moment derivative w.r.t angle of attack on canard 

𝐿
𝐷⁄  Lift to drag ratio 

𝑀𝑐𝑜𝑟𝑟 Corrective moment about pitch axis 

𝑀𝑑𝑎𝑚𝑝 Damping moment about pitch axis 

𝑀𝑐𝑎𝑛 Moment induced by the canards about the pitch axis 

𝑀𝛼 Canard pitch moment derivative w.r.t angle of attack on canard 
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�̇� Engine exhaust gas mass flow rate 

𝐌 Resultant moment vector 

𝑁𝑐𝑜𝑟𝑟 Corrective moment about yaw axis 

𝑁𝑑𝑎𝑚𝑝 Damping moment about yaw axis 

𝑁𝑐𝑎𝑛 Moment induced by the canards about the yaw axis 

𝑁𝛼 Canard yaw moment derivative w.r.t angle of attack on canard 

𝑁 Number of fins 

𝑁 Chernoff bound number of samples 

𝜙 Roll angle 

𝜃 Pitch angle 

𝜓 Yaw angle 

𝑝 Roll rate 

𝑞 Pitch rate 

𝑟 Yaw rate 

𝜌 Air density 

�̅� Dynamic pressure 

Q State-cost weighted matrix 

R Input-cost weighted matrix 

∑𝑐𝑖𝜉𝑖
2Δ𝜉𝑖 Roll damping fin planform sum term (Niskanen, 2009) 

𝑆 Canard planform area 

𝐮 Input vector, {𝑥1 𝑥2 𝑦1 𝑦2} 𝑇 

𝑣 Velocity 

𝛚 Attitude rate vector, {𝑝 𝑞 𝑟} 𝑇 

�̇� Attitude acceleration vector, {�̇� �̇� �̇�} 𝑇 

𝑥𝐵, 𝑦𝐵, 𝑧𝐵 𝑥, 𝑦, and 𝑧 coordinates in the body frame of reference 

𝑥𝐺 , 𝑦𝐺 , 𝑧𝐺 𝑥, 𝑦, and 𝑧 coordinates in the global frame of reference 

𝑥1, 𝑥2 Pitch axis canard deflections 

𝑦1, 𝑦2 Yaw axis canard deflections 

𝑋𝐶𝑃 Distance from nose cone tip to centre of pressure 

𝑋𝐶𝐺 Distance from nose cone tip to centre of gravity 

�̅�𝐶𝑃 Distance between CP and CG, 𝑋𝐶𝑃 − 𝑋𝐶𝐺 

𝑋𝑇 Distance from nose cone tip to nozzle throat 

�̅�𝑇 Distance between CG and nozzle throat, 𝑋𝑇 − 𝑋𝐶𝐺 

𝑋𝐶𝑃𝑐𝑎𝑛  Distance from nose cone tip to canard CP 

�̅�𝐶𝑃𝑐𝑎𝑛  Distance between CG and canard CP, 𝑋𝐶𝑃𝑐𝑎𝑛 − 𝑋𝐶𝐺 

𝐱 State vector, {𝜙 𝜃 𝜓 𝑝 𝑞 𝑟} 𝑇 

�̇� State derivative vector, {𝑝 𝑞 𝑟 �̇� �̇� �̇�} 𝑇  

A, B, C, D, E, F State space matrices 
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𝑌𝐶𝑃𝑐𝑎𝑛  Distance from body frame origin to canard CP in 𝑦𝐵 direction 

�̅�𝐶𝑃𝑐𝑎𝑛  Distance between CG and canard CP in 𝑦𝐵 direction, 𝑌𝐶𝑃𝑐𝑎𝑛 − 𝑌𝐶𝐺  

𝑍𝐶𝑃𝑐𝑎𝑛  Distance from body frame origin to canard CP in 𝑧𝐵 direction 

�̅�𝐶𝑃𝑐𝑎𝑛  Distance between CG and canard CP in 𝑧𝐵 direction, 𝑍𝐶𝑃𝑐𝑎𝑛 − 𝑍𝐶𝑃 

 

Acronyms 

CFD Computational fluid dynamics 

CG Centre of gravity 

CP Centre of pressure 

LQR Linear quadratic regulator (controller) 

LURA Leeds University Rocketry Association 

MIMO Multi-input, multi-output 

PID Proportional-integral-derivative (controller) 

RAM Random access memory 

SISO Single-input, single-output 

SM Static margin 
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1 Introduction 
 

1.1 Project Aptos 

This report forms part of the wider Project Aptos. Conducted as a five-person master’s 

team project at the University of Leeds, Project Aptos aims to develop an active control 

system to improve the dynamic stability of a sounding rocket and ensure it flies a more 

vertical trajectory.  

This project was run in conjunction with the Leeds University Rocketry Association 

(LURA) and was sponsored by Collins Aerospace. LURA aims to use the findings of this 

project to further develop the team’s understanding of active control and will use future 

iterations of the Aptos system to ensure their rockets fly vertically, and therefore reach 

higher altitudes, in the pursuit of the UK amateur rocketry altitude record (UKRA, 2021). 

Following consideration of different control systems, it was decided to use a set of four 

canards near the nose of the rocket controlled by servomotors to steer the rocket during 

ascent. Details of the full system, including the Pathfinder rocket on which the control 

system was implemented, are discussed by Youds et al. (2023). 

1.2 Individual Aims and Objectives 

This report discusses the design, analysis, and testing of the Aptos control algorithm. 

The aim of this project was to develop a closed loop controller capable of making the 

rocket fly a more vertical trajectory by controlling the deflections of the four canards.  

This aim consisted of several objectives: 

1 Create a mathematical model of the system dynamics from first principles. 

2 Implement this model in Simulink in order to predict the behaviour of the 

system. 

3 Design a controller that can deflect the canards in order to maintain more 

vertical flight. 

 

1.3 Report Structure 

These objectives are addressed in order through this report. First, existing literature on 

rocket active control systems is reviewed in Chapter 2. A mathematical model of the 

aerodynamic behaviour of the rocket is derived in Chapter 3, and this is then used to 

design a closed loop controller in Chapter 4. The position control of the servomotors is 

also discussed here. Chapter 4 concludes with analysis of the system’s performance 

and robustness to expected variations in the rocket’s geometry.  
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2 Literature Review and Theoretical Background 
 

2.1 Sounding Rocket Stability 

A rocket is considered passively stable if its centre of pressure (CP) is further aft than its 

centre of gravity (CG), such that the aerodynamic forces acting on the airframe keep the 

rocket aligned with the incoming airflow (NAROM Andøya Space Centre, 2018). It is 

generally accepted that a rocket must maintain a static margin, 𝑆𝑀 > 1, to be passively 

stable, where the static margin is given by the distance between the CP and the CG 

divided by the rocket’s body diameter. 

Passive stability is not always desirable, especially when a rocket aims to reach high 

altitudes. As identified by Uselton (1971) and Ujjin et al. (2021), passively stable rockets 

‘weathercock’ in the presence of a crosswind. Whilst not flying vertically, the horizontal 

component of the thrust vector is effectively wasted, limiting altitude and increasing the 

possible landing radius (Lorenz and Bierig, 2013). What is more desirable for such 

rockets is an active system, which maintains dynamic stability and allows passively 

unstable rockets to fly pre-determined trajectories. 

Active aerodynamic control surfaces can be used to steer rockets in a similar fashion to 

conventional aircraft. Their use is widely documented on missile and artillery systems, 

for example by Guo et al. (2016), Uselton (1971) and Seaberg and Smith (1951), where 

they are generally used for precise impacts. Despite the different use case, some control 

laws designed for weapon systems can be applied to sounding rockets.  

Mracek and Ridgely (2006), for example, discuss at depth the autopilot system for a 

canard-controlled missile. Their system has great similarities with the system developed 

in this project, but the missile uses two sets of control surfaces: canards and rear fins.  

Similar research exists for non-military rockets, although it generally focuses on larger-

scale vehicles than Pathfinder. Choi and Bang (2000) developed an adaptive controller 

specifically for a slender sounding rocket, where the body-bending vibration of the 

airframe is considered and compensated for by the controller. Despite the similarities 

between Pathfinder and the KSR-II rocket examined in the paper, this level of structural 

analysis is not required for this project, where the fibreglass airframe provides good 

rigidity relative to the low thrust and aerodynamic loads.  

Braswell et al. (2017) discuss the development of a canard control system as a payload 

for the NASA Student Launch Competition. A series of flight tests were performed to 

tune the controller, though a loose fin on the competition flight prevented the system 
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from performing as expected. The scale of the rocket itself is not dissimilar to Pathfinder 

and the budget and timescales align well with this project, though their system focusses 

solely on controlling roll, in contrast to the three-axis control needed for Aptos.  

2.2 Closed Loop Control Systems 

These papers provide a good insight into different control law options. Since Braswell et 

al. (2017) aim to control roll attitude only, the system is single-input, single-output 

(SISO), and thus a PID controller is used. This controller is simple to setup and tuning it 

does not require a linear model of the system, though the effects of the gain values 

themselves are not always intuitive for more complex nonlinear systems. 

Another option is an LQR, as implemented by Mracek and Ridgely (2006). LQR 

controllers are inherently robust, handle multi-input, mutli-output (MIMO) systems very 

well, and are intuitive to tune. Actuating both the canards and rear fins introduces 

additional complexity in Mracek and Ridgely’s work, though their strategy for tuning and 

analysing the system’s performance was useful for this project. Aside from rockets, 

discussion of various control systems for quadrotor drones (Vigneswaran and Kp, 2019) 

and satellites (Narkiewicz et al., 2020) also provided helpful research for this project. 

2.3 Robustness Analysis 

Variations in the rocket’s geometry and mass properties occur during the manufacturing 

process and therefore in reality, the system dynamics will differ from the model that the 

controller has been designed with. It is therefore important to verify that a controller is 

robust to these variations in terms of stability and performance.  

Robustness and stability can be investigated by examining the worst perturbation from 

the nominal state space in the form of 𝜇 analysis (Morton and McAfoos, 1985), or by 

calculating the disk margins of the system (Seiler et al., 2020). These methods provide 

a deterministic solution to the robustness problem, but do not account for the additional 

complexity of nonlinear behaviour, which is inherent to any aerodynamic system. 

Alternatively, a more stochastic methodology can be used in the form of the Monte Carlo 

approach (Ray and Stengel, 1993). Generally, this method is computationally expensive 

and risks missing a parameter variation combination that can make the system unstable. 

However, work by Postlethwaite et al. (2009) and Tempo and Dabenne (2004) applies 

the Chernoff Bound to calculate the lower bound for the number of samples which must 

be used to gain a given accuracy and confidence in a system’s robustness. This proved 

extremely useful for the analysis conducted in Chapter 4.  
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3 Mathematical Modelling 
 

Before a controller can be designed, a mathematical model of the system must be 

derived. This model must accurately describe the behaviour of the system dynamics 

within the expected operating conditions without being overly computationally 

expensive.  

3.1 Frames of Reference 

Two frames of reference are used here. The body frame, 𝐵, is fixed to the rocket during 

flight. It is a right-handed coordinate system with origin at the rocket’s CG, and the 𝑥𝐵 

axis parallel to the rocket’s longitudinal axis, pointing upwards towards the nose. The 𝑦𝐵 

and 𝑧𝐵 axes are then orthogonal and lie on the rocket’s cross section. 

The global frame, 𝐺, is a right-handed coordinate system with its origin fixed to the 

ground at the location of the launch pad. The 𝑥𝐺 axis points directly upwards, 

perpendicular to the ground and the 𝑦𝐺 and 𝑧𝐺 axes are orthogonal to it parallel to the 

ground. The flight is low-altitude and lasts less than a minute, and therefore the Earth’s 

rotation has been neglected and the ground has been modelled as a flat plane.  

At the time of ignition, the body and global frames are aligned, but do not remain so 

during flight. The rocket’s roll, pitch and yaw angles, 𝜙, 𝜃, and 𝜓, are then defined as the 

Euler angles that compose the rotation, R, such that any vector, 𝐚 ∈ ℝ3, is transformed 

from the global frame to the body frame, as in (3.1). 

𝐚𝐵 = R(𝜙, 𝜃, 𝜓) 𝐚𝐺 (3.1) 

3.2 Pitch and Yaw Moments 

It has been assumed that there are three moments acting on the rocket’s pitch and yaw 

axes during flight. 

𝑀𝑐𝑜𝑟𝑟  Corrective moment induced by the lift acting on the rocket’s passive fins. 
 

𝑀𝑑𝑎𝑚𝑝 Damping moment induced by the drag on the airframe as it rotates. 

𝑀𝑐𝑎𝑛 Canard moment induced by the lift of the deflected canards. 
  

3.2.1 Pitch / Yaw Corrective Moment 

Providing that the rocket’s CP is further aft than its CG, there will be a corrective moment 

acting to align the rocket with the incoming air flow. In the presence of a crosswind, this 

moment will reduce the rocket’s angle of attack. Mandell et al. (1973) state that the pitch 

and yaw corrective moments, 𝑀𝑐𝑜𝑟𝑟  and 𝑁𝑐𝑜𝑟𝑟, acting on the rocket are proportional to 

the angle of attack as in (3.2).  
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𝑀𝑐𝑜𝑟𝑟 = 𝐶1𝛼       ,        𝑁𝑐𝑜𝑟𝑟 = 𝐶1𝛽 (3.2) 

Where 𝐶1 is the corrective moment coefficient, given by (3.3) and derived by Mandell et 

al. (1973). 

𝐶1 = �̅�𝐴𝑟𝑒𝑓𝐶𝑁𝛼�̅�𝐶𝑃 (3.3) 

Where �̅� is the dynamic pressure of the airflow, �̅� =
1

2
𝜌𝑣2, 𝐴𝑟𝑒𝑓  is the body tube’s cross-

sectional area, and �̅�𝐶𝑃 is the moment arm between the CP and the CG:  

�̅�𝐶𝑃 = 𝑋𝐶𝑃 − 𝑋𝐶𝐺. 𝐶𝑁𝛼  is the rocket’s normal force coefficient derivative with respect to 

angle of attack. The methods used to calculate this parameter were derived by Niskanen 

(2009) and Youds (2022) and are included in Appendix A.   

3.2.2 Pitch / Yaw Damping Moment 

Mandell et al. (1973) also derive the rocket’s pitch and yaw damping moments, and as 

expected, these are proportional to the pitch rate, 𝑞, and yaw rate, 𝑟, respectively. 

𝑀𝑑𝑎𝑚𝑝 = 𝐶2𝑞        ,        𝑁𝑑𝑎𝑚𝑝 = 𝐶2𝑟 (3.4) 

Where 𝐶2 is the damping moment coefficient, derived by Mandell et al. (1973). 

𝐶2 =
�̅�

𝑣
𝐴𝑟𝑒𝑓 [∑𝐶𝑁𝛼𝑖

�̅�𝐶𝑃𝑖
2
] + �̇��̅�𝑇

2 (3.5) 

Where 𝐶𝑁𝛼𝑖
 is the normal force coefficient derivative of the 𝑖th fuselage component, (e.g., 

nose cone, body tube, or fins), and �̅�𝐶𝑃𝑖  is the moment arm between the rocket’s CG 

and the CP of the 𝑖th component: �̅�𝐶𝑃𝑖 = 𝑋𝐶𝑃𝑖 − 𝑋𝐶𝐺. The first term here represents the 

aerodynamic damping due to drag as the rocket rotates, and the second represents the 

jet damping. 

Jet damping is an additional damping torque induced by the jet of exhaust gases leaving 

the engine. This fast-moving gas resists changes in rotational momentum and helps to 

keep the rocket flying straight. �̇� is the mass flow rate of the exhaust gas, and �̅�𝑇 is the 

moment arm between the rocket’s CG and the engine throat. 

3.2.3 Pitch / Yaw Canard Moment 

When the canards are deflected, the lift force they generate induces pitch and yaw 

moments on the rocket. Figure 5 in Appendix D shows the canard configuration. 

Two canards on opposite sides of the rocket control pitch motion about the 𝑦𝐵 axis. The 

canard moment, 𝑀𝑐𝑎𝑛, is equal to the distance between the rocket’s CG and the CP of 

the canards multiplied by the horizontal component of the canard lift force. Drag can be 
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assumed to be negligible here since the canard 𝐿 𝐷⁄  ratio is approximately 120 (Daney 

de Marcillac, 2023). Therefore, the canard pitch moment is given by (3.6).  

𝑀𝑐𝑎𝑛 = �̅�𝑆�̅�𝐶𝑃𝑐𝑎𝑛(𝐶𝐿1 cos 𝑥1 + 𝐶𝐿2 cos 𝑥2) (3.6) 

The lift coefficient itself is proportional to angle of attack. The angle of attack on the 

canard depends on the rocket’s angle of attack, 𝛼, and the canard deflection, 𝑥𝑖. The 

sign convention for the canard deflections is important here. Since the body frame origin 

lies at the CG, one canard lies on the 𝑦𝐵
+ axis – canard 1 – and the other on the 𝑦𝐵

− axis 

– canard 2. The deflections of these canards are 𝑥1 and 𝑥2 respectively. 

A positive 𝑥1 deflection generates a positive pitching moment, as per the righthand screw 

rule. The opposite is true for canard 2; a positive 𝑥2 deflection results in a negative 

pitching moment. Therefore, if 𝑥1 = 𝑥2, there will be no pitching motion, only rolling 

motion. Consequently, the AoA on canard 1 is the difference between 𝛼 and 𝑥1, whereas 

for canard 2, it is the sum of 𝛼 and 𝑥2. Applying this to (3.6) gives (3.7). 

𝐶𝐿𝑖 = 𝐶𝐿𝛼𝛼𝑐𝑎𝑛𝑖 

⇒ 𝑀𝑐𝑎𝑛 = �̅�𝑆𝐶𝐿𝛼�̅�𝐶𝑃𝑐𝑎𝑛 [(𝛼 − 𝑥1) cos 𝑥1 + (𝛼 + 𝑥2) cos 𝑥2] (3.7) 

For simplicity of notation, the pitch moment derivative with respect to canard angle of 

attack can be defined as 𝑀𝛼 = �̅�𝑆𝐶𝐿𝛼�̅�𝐶𝑃𝑐𝑎𝑛 . Applying this substitution to (3.7) gives (3.8). 

𝑀𝑐𝑎𝑛 = 𝑀𝛼[(𝛼 − 𝑥1) cos 𝑥1 + (𝛼 + 𝑥2) cos 𝑥2] (3.8) 

This is also true for the yaw canard moment, 𝑁𝑐𝑎𝑛.  

𝑁𝑐𝑎𝑛 = 𝑁𝛼[(𝛽 − 𝑦1) cos 𝑦1 + (𝛽 + 𝑦2) cos 𝑦2] (3.9) 

3.3 Roll Moments 

Two moments act on the rocket’s roll axis. Since the Pathfinder fins are mounted on 

bearings and can spin freely, it has been assumed that the only roll forcing moment is 

due to the canards. 

𝐿𝑑𝑎𝑚𝑝 Damping moment induced by the drag on the airframe as it rotates. 

𝐿𝑐𝑎𝑛 Canard moment induced by the lift of the deflected canards. 
  

3.3.1 Roll Damping Moment 

Youds (2022) expands Niskanen’s (2009) work to show that the roll damping moment is 

proportional to the rocket’s roll rate, 𝑝, as in (3.16). 

𝐿𝑑𝑎𝑚𝑝 = 𝐶𝑑𝑝𝑝 (3.10) 

Where 𝐶𝑑𝑝  is the roll damping coefficient with respect to roll rate (Youds, 2022). 
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𝐶𝑑𝑝 =
�̅�

𝑣
𝐴𝑟𝑒𝑓𝑑𝑏𝑜𝑑𝑦𝑁𝐶𝑁𝛼0(∑𝑐𝑖𝜉𝑖

2Δ𝜉𝑖) (3.11) 

Where 𝑑𝑏𝑜𝑑𝑦 is the body tube diameter and 𝐶𝑁𝛼0  is the normal force coefficient of the 

fin’s 2D aerofoil. The final sum term is constant for a specific fin planform shape and is 

given by Youds (2022) and Niskanen (2009). 

3.3.2 Roll Canard Moment 

The canard roll moment is defined by (3.12). Figure 6 in Appendix D shows the directions 

of these forces. Again, the drag on the canards has been neglected. 

𝐿𝑐𝑎𝑛 = �̅�𝐶𝑃𝑐𝑎𝑛𝐹𝑥1 − �̅�𝐶𝑃𝑐𝑎𝑛𝐹𝑥2 + �̅�𝐶𝑃𝑐𝑎𝑛𝐹𝑦1 − �̅�𝐶𝑃𝑐𝑎𝑛𝐹𝑦2 (3.12)

Where �̅�𝐶𝑃𝑐𝑎𝑛  and �̅�𝐶𝑃𝑐𝑎𝑛  are the moment arms between the CG and the CP of the 

canards in the 𝑦𝐵 and 𝑧𝐵 axes respectively. It is assumed that the CG lies on the body 

frame origin, and therefore �̅�𝐶𝑃𝑐𝑎𝑛 = 𝑌𝐶𝑃𝑐𝑎𝑛  and �̅�𝐶𝑃𝑐𝑎𝑛 = 𝑍𝐶𝑃𝑐𝑎𝑛 . Moreover, the canards 

are placed symmetrically about the 𝑥 axis, and thus 𝑌𝐶𝑃𝑐𝑎𝑛 = 𝑍𝐶𝑃𝑐𝑎𝑛 . 

𝐹𝑥1 , 𝐹𝑥2 , 𝐹𝑦1 , and 𝐹𝑦2  are the components of the lift forces acting in the 𝑦𝐵 − 𝑧𝐵 plane. 

Since 𝐹𝑖 = �̅�𝑆𝐶𝐿𝛼𝛼𝑐𝑎𝑛𝑖 cos 𝑥𝑖, and using the angles of attack derived in Section 3.2.3, the 

total moment can be expressed in the form shown in (3.13).  

𝐿𝑐𝑎𝑛 = 𝐿𝛼[(𝛼 − 𝑥1) cos 𝑥1 − (𝛼 + 𝑥2) cos 𝑥2 + (𝛽 − 𝑦1) cos 𝑦1 − (𝛽 − 𝑦2) cos 𝑦2] (3.13) 

Where 𝐿𝛼 = �̅�𝑆𝐶𝐿𝛼𝑌𝐶𝑃𝑐𝑎𝑛 = �̅�𝑆𝐶𝐿𝛼𝑍𝐶𝑃𝑐𝑎𝑛  is the derivative of the canard roll moment with 

respect to the angle of attack of the respective canard.  

3.4 Equation of Motion Formulation 

Euler’s Rotational Equation of Motion relates the rocket’s rotational accelerations, �̇�, 

and rates, 𝛚, to the moments acting on it during flight, as shown in (3.14). 

J�̇� + 𝛚 × (J𝛚) = 𝐌 (3.14) 

Where J is the rocket’s moment of inertia matrix. It can be assumed that the rocket is 

axisymmetric about the 𝑥𝐵 axis, and therefore J is given by (3.15). 

J = {𝐽𝑅 𝐽𝐿 𝐽𝐿}
 𝑇 ⋅ I3 (3.15) 

Where 𝐽𝑅 and 𝐽𝐿 are the rocket’s radial and longitudinal mass moments of inertia 

respectively and I𝑛 is the 𝑛 × 𝑛 identity matrix. 

The resultant moment vector, 𝐌, is given by (3.16). 

𝐌 = [

𝐿𝑐𝑎𝑛 − 𝐿𝑑𝑎𝑚𝑝
𝑀𝑐𝑎𝑛 −𝑀𝑐𝑜𝑟𝑟 −𝑀𝑑𝑎𝑚𝑝
𝑁𝑐𝑎𝑛 − 𝑁𝑐𝑜𝑟𝑟 − 𝑁𝑑𝑎𝑚𝑝

]  
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⇒ 𝐌 = [

𝐿𝛼[(𝛼 − 𝑥1) cos 𝑥1 − (𝛼 + 𝑥2) cos𝑥2 + (𝛽 − 𝑦1) cos 𝑦1 − (𝛽 + 𝑦2) cos 𝑦2] − 𝐶𝑑𝑝𝑝

𝑀𝛼[(𝛼 − 𝑥1) cos𝑥1 + (𝛼 + 𝑥2) cos𝑥2] − 𝐶1𝛼 − 𝐶2𝑞

𝑁𝛼[(𝛽 − 𝑦1) cos𝑦1 + (𝛽 + 𝑦2) cos𝑦2] − 𝐶1𝛽 − 𝐶2𝑟

] (3.16) 

Equations (3.15) and (3.16) were substituted into (3.14) to give the rotational equations 

of motion for the rocket. The final equation has been omitted here for the sake of brevity. 

3.5 Nonlinear Modelling 

To run simulations of the rocket’s motion and tune the controller, the nonlinear dynamics 

equation (3.14) was implemented in Simulink. Aerodynamic properties, such as the 

normal force coefficient derivatives and centres of pressure were calculated directly from 

Pathfinder’s geometry using the equations discussed in Appendix A and the work of 

Youds (2022) and Niskanen (2009). 

Mass properties, such as the mass moments of inertia, centre of gravity location, and 

exhaust gas mass flow rate were exported from OpenRocket. Lookup tables were 

implemented in Simulink to model the variation of these parameters throughout ascent.  

The vertical velocity over time was also exported from OpenRocket and a range of 

profiles were tested to ensure the controller was not overly sensitive to velocity variations 

as this is something that was expected to be difficult to perfectly predict for the real flight. 

The complexity of the modelling was increased over time. First, the system response 

was analysed at a single operating point, for example a constant velocity and altitude. 

This was used to ensure the system had adequate controllability before progressing.  

A time variant model was then created, where the operating condition was itself a 

function of time, to better simulate a real flight. To start with, this model assumed a 

crosswind of constant speed and direction, acting only in the 𝑦𝐺 − 𝑧𝐺 plane.  

Later, this was improved, using Dryden’s wind turbulence model in Simulink 

(MathWorks, n.d.). This model varied both the windspeed and direction based on the 

rocket’s altitude and attitude. This was used to ensure the rocket could perform three 

axis control effectively and respond adequately to sudden gusts of wind. Full analysis of 

these results has not been included in the main body of the report due to space 

limitations, but graphs of the system performance for these models is in Appendix E. 
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4 Closed Loop Controller Design 
 

4.1 States, Inputs, and Disturbances 

To fly vertically, the controller works to minimise the rocket’s roll, pitch, and yaw angles 

and rates. These six variables form the state vector, 𝐱 ∈ ℝ𝟔, shown in (4.1), where 𝜙, 𝜃, 

and 𝜓 are the roll, pitch and yaw angles respectively, and 𝑝, 𝑞, and 𝑟 are their rates. 

𝐱 = {𝜙 𝜃 𝜓 𝑝 𝑞 𝑟} 𝑇 (4.1) 

These four angular canard deflections make up the input vector, 𝐮 ∈ ℝ𝟒, shown in (4.2). 

The notation for the canard naming described in Chapter 3 is used again here.  

𝐮 = {𝑥1 𝑥2 𝑦1 𝑦2} 𝑇 (4.2) 

As shown in Chapter 3, the angle of attack and sideslip angle, 𝛼 and  𝛽, affect the lift 

generated by the canards, as well as the pitch and yaw corrective moments. Measuring 

these angles would require two angle of attack vanes as seen on aircraft, placed 

perpendicular to each other on the rocket’s airframe (Gracey, 1958). Those used on 

aircraft are too large and heavy for use on Pathfinder, and therefore custom sensors 

would need to be designed, manufactured and tested, adding significant complexity.  

Instead, 𝛼 and 𝛽 are modelled as disturbances and are not measured. The disturbance 

vector, 𝐝 ∈ ℝ𝟐, is therefore of the form shown in (4.3). 

𝐝 = {𝛼 𝛽} 𝑇 (4.3) 

4.2 State Space Formulation 

The rocket’s rotational equations derived in Chapter 3 are inherently nonlinear. A linear 

representation can be formed, known as the state space formulation, where the system 

dynamics are described by equation (4.4). 

�̇� = A𝐱+ B𝐮 + E𝐝
𝐲 = C𝐱 + D𝐮 + F𝐝

(4.4) 

Where A, B, C, D, E, and F are matrices that relate the system states, inputs, and 

disturbances to the state derivative, �̇�, and output, 𝐲. 

To obtain this formulation, the dynamics equations derived in Section 3.4 were 

rearranged in terms of the components of 𝐱, 𝐮, and 𝐝. These equations were then 

linearised around the steady-state operating point �̅� = 0, using the first-order Taylor 

series and small angle approximations. Full derivation of the state space equation is 

presented as Appendix B. The final state space representation is shown as (4.5). 
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�̇� =

[
 
 
 
 
 
 
 
 
 
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0 0 0 −
𝐶𝑑𝑝
𝐽𝑅

0 0

0 0 0 0 −
𝐶2
𝐽𝐿

0

0 0 0 0 0 −
𝐶2
𝐽𝐿 ]
 
 
 
 
 
 
 
 
 

𝐱 +

[
 
 
 
 
 
 
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0

−
𝐿𝛼
𝐽𝑅

−
𝐿𝛼
𝐽𝑅

−
𝐿𝛼
𝐽𝑅

−
𝐿𝛼
𝐽𝑅

−
𝑀𝛼

𝐽𝐿
+
𝑀𝛼

𝐽𝐿
0 0

0 0 −
𝑁𝛼
𝐽𝐿

+
𝑁𝛼
𝐽𝐿 ]
 
 
 
 
 
 
 
 
 

𝐮 +

[
 
 
 
 
 
 
 
 

0 0
0 0
0 0
0 0

2
𝑀𝛼

𝐽
𝐿

−
𝐶1

𝐽
𝐿

0

0 2
𝑁𝛼

𝐽
𝐿

−
𝐶1

𝐽
𝐿 ]
 
 
 
 
 
 
 
 

𝐝(4.5) 

𝐲 = I6𝐱 

4.3 LQR Design 

Once the state space representation was formed, the LQR controller was tuned. Figure 

1 shows the layout of the closed loop control system. 

 

Figure 1 - Closed loop control diagram of the Aptos control system. 

The LQR controller acts as a 4×6 pure gain matrix, K, applied to the state error in order 

to derive the desired control inputs, 𝐮. These gains are calculated by minimising the cost 

function (4.6), where 𝐮 = −K 𝐱 and Q and R are the state-cost and input-cost weighted 

matrices (Yang, 2012; Okyere et al., 2019). 

𝐽 = ∫ (𝐱TQ𝐱 + 𝐮TR𝐮) 𝑑𝑡
∞

0

(4.6) 

From inspection, this is an energy minimisation problem, where 𝐱TQ𝐱  represents the 

energy of the rocket due to its current state, and 𝐮TR𝐮 represents the energy associated 

with the actuation of the inputs. 

In practice, to tune the controller, the MATLAB lqr(A, B, Q, R) function was used, 

where A and B represent the state space matrices from (4.5). The Q and R matrices are 

varied to achieve the desired performance. Since each canard is actuated by an identical 

servomotor, the cost was considered equal across all inputs and the input-cost weighted 

matrix was of the form shown in (4.6). 
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R = 𝑟 ⋅ I4 (4.6) 

Where 𝑟 is the actuator penalisation weight. 

This was not the case for the state-cost weighted matrix, where individual weights were 

used to prioritise the reduction of some state errors more than others, as in (4.7). 

Q = {𝑞𝜙 𝑞𝜃 𝑞𝜓 𝑞𝑝 𝑞𝑞 𝑞𝑟} 𝑇 ⋅ I6 (4.7) 

Where 𝑞𝑖 are the weightings for each state. 

For the first few flight tests, a priority was to ensure that the canard motion was as 

smooth as possible, avoiding sudden changes in deflection. This helps prevent the 

canards from undergoing dynamic stall and other nonlinear aerodynamic effects. 

To achieve this, minimising the pitch and yaw angles was prioritised over minimising the 

pitch and yaw rates. Thus, 𝑞𝜃 > 𝑞𝑞 and 𝑞𝜓 > 𝑞𝑟. As a result, the response was slightly 

slower acting and less damped, however the canard deflections were smoother. 

During flight, minimising roll rate is significantly more important than roll angle. If the 

rocket begins to spin at a fast rate, a small pitch or yaw perturbation will lead to a 

significant gyroscopic precession known as coning (Youds, 2022). Pitch and yaw 

controllability will be significantly reduced to the point that instability could occur. 

When the rocket rolls, it’s important that the controller reduces the roll rate, but does not 

attempt to return the rocket to its original roll angle. To this end, the ideal roll angle 

weighting, 𝑞𝜙, is zero. However, one condition of the LQR controller is that both the Q 

and R matrices must be positive definite (Yang, 2012) and therefore a very small value 

is used such that 𝑞𝑝 ≫ 𝑞𝜙. 

The specific values of the 𝑞 and 𝑟 weighting factors were determined through trial-and-

error until the Simulink simulations indicated that the system met the performance 

requirements. Bryson’s Rule (Okyere et al., 2019) was investigated as a method to 

achieve this algorithmically, although the gains this produced were very high and it was 

later found that comparable performance could be achieved with significantly lower 

gains. The final weightings are shown in (4.8) and (4.9). 

Q = {1 × 10−9 4 4 4 1 1} 𝑇 ⋅ I6 (4.8) 

R = 5 ⋅ I4 (4.9) 

4.4 Gain Scheduling 

Every aerodynamic property of the system varies with velocity, and most are proportional 

to the velocity squared. Intuitively, the controller will require significantly less actuator 

effort when the rocket is flying at higher speeds than it does when at low speeds.  
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Gain scheduling was implemented to ensure that the controller could account for these 

velocity changes as the rocket accelerates. Optimum gain-sets were calculated at 

different velocities from 30 m/s up to 150 m/s (about 1.5x the expected maximum speed). 

The onboard flight computer then hands off between gain-sets as the differentiated 

barometer data indicates that the vertical velocity has changed. Gain scheduling 

significantly improved performance across the full velocity profile with very little memory 

cost on the flight computers.  

4.5 Servomotor Position Control 

The analysis up to this point has assumed that the LQR controller can command a 

certain canard deflection, and this deflection is achieved instantly. In reality, both time 

delay and position error are present in the servomotors, and this affects the system’s 

performance. 

The Herkulex DRS-0101 motors used in the Aptos module were smart servos and 

featured an in-built potentiometer and PID controller for position control. The PID gains 

could be written directly to the servos’ RAM, meaning that different combinations could 

be tested quickly and easily.  

From requirements APT-REQ-1-5-1 and APT-REQ-1-5-6, the servomotors must 

respond to a 10° step input with a settling time less than 0.1 s and an accuracy of ±0.5° 

with no overshoot outside of these bounds. In addition, a pointing accuracy of 1±0.1° is 

needed to ensure the servos have the fine control required for flight (APT-REQ-1-5-5).  

This was achieved through a trial-and-error testing process. One of the servos was 

connected to a computer via an Arduino Uno development board and a step input was 

commanded. The angular position of the servo was read from its potentiometer, and the 

PID gains were iteratively tuned until performance met the requirements.  

Figure 2 shows the response to both a 1° and 10° step input. The PID gains used are 

displayed in Table 1. 

 

Figure 2 - Servomotor position step response graphs with the default and updated PID gain sets for steps 
of 1° and 10°. 



13 

 

Table 1 - PID gains used for the servomotor position controller. 

 𝑲𝒑 𝑲𝒊 𝑲𝒅 

Default 440 0 8000 

Updated 550 1000 9000 

 

The default gains provided a good response for the 10° step, however the performance 

for the 1° step was poor. The servomotors operate in increments of 0.325°, and the gains 

were not high enough to overcome the internal friction needed to step through the final 

increment, thus the shaft gets stuck at 0.65°. Similar plateaus can be seen in the updated 

gain response, however the higher 𝐾𝑝 and 𝐾𝑖 gains forced the controller to overcome 

the frictional force.  

The updated response for the 10° step was very good. There was a small amount of 

overshoot, but this was within acceptable bounds. Increasing the 𝐾𝑑  gain further reduced 

this overshoot but slowed the response for the 1° step too much.  

Using the MATLAB System Identification App and the step data shown in Figure 2, a 

transfer function was fit, which represented the servomotor position control dynamics. 

This was used in Simulink to model the delay and position error associated with actuating 

the canards. 

4.6 Robustness Analysis 

Requirement APT-REQ-1-1-1 states that the controller must be robust to expected 

deviations from the geometry of the Pathfinder rocket with 95% accuracy and 

confidence. Specifically, the nominal values and expected variability of each of these 

parameters are provided in Appendix C. 

The Chernoff Bound can be used to calculate the number of samples needed to gain the 

required accuracy and confidence, as in (4.8) (Postlethwaite et al., 2009). 

𝑁 ≥
log(2 𝛿⁄ )

2𝜖2
(4.8) 

Applying 𝜖 = 𝛿 = 0.05 gives a minimum sample number of 737.8. In total, 740 

simulations were run. Figure 3 shows how the system is robust both in terms of 

performance and stability across the entire expected parameter variation. This model 

assumes a constant windspeed of 5 m/s acting only in the 𝑧𝐺
+ direction. 

This is expected as the LQR is an inherently robust controller, however it is impressive 

that the system can handle up to ±50% variation in the canard 𝐶𝐿𝛼 value. This fact 

prevented the need for any high fidelity aerodynamic modelling of the canards.  
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Figure 3 - Results from the control system robustness analysis. 

4.7 Controller Performance 

Figure 4 displays how the system handles a 5 m/s constant crosswind. In this simulation, 

the wind vector acted solely in the 𝑧𝐺
+ direction and therefore induced pitch motion only. 

For comparison, the free response without active control enabled is also plotted on 

Figure 4.  

 

Figure 4 - System performance with 5 m/s constant crosswind. 

The control algorithm was set to only activate whilst the vertical velocity, 𝑣 ≥ 30 m/s. 

This prevented it from activating whilst the rocket was still on the launch rail and 

minimises actuator energy cost towards apogee when the velocity is too low for the 

rocket to be controllable. 

The Aptos system reduced the peak pitch angle by about 2.7° and significantly damped 

the oscillations following rail departure. The steady state pitch angle during ascent is 

very similar for both cases, as is the increase in pitch as the rocket decelerates towards 

apogee. This system provides a good first proof-of-concept, and performance can be 

significantly improved by reducing the input-cost weighting matrix, R.  
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5 Conclusion 
 

5.1 Achievements and Impact 

This project aimed to develop the active control algorithm for a canard-controlled 

sounding rocket stability augmentation system. First, the work of Mandell et al. (1973), 

Niskanen (2009), and Youds (2022) was expanded to derive a three degree of freedom 

dynamic model of a canard-controlled sounding rocket. This model was linearised using 

first order Taylor series techniques and small angle approximations, and an LQR 

controller was tuned to minimise the rocket’s attitude and attitude rates throughout 

ascent. A separate PID controller was tuned to improve the response of the servomotors 

that control the canards, and system identification techniques were used to model the 

actuator’s behaviour in Simulink. Finally, the system’s performance was verified and its 

robustness was analysed using stochastic methods derived by Postlethwaite et al. 

(2009) and Tempo and Dabenne (2004). 

The performance of the LQR controller in simulations indicated that it met the 

requirements set out in the project’s contract performance plan. Moreover, due to the 

controller’s inherent robustness, it has been proven to handle significant variations in 

rocket and canard geometry with almost no cost to performance or stability. Specifically, 

this was verified with both an accuracy and confidence of 95%. 

Significant progress has been made towards developing a fully functional, modular 

canard control system. Although full flight testing has not yet been possible, the two data 

acquisition flights conducted throughout this project were highly successful. The 

performance of the control algorithm during both flights was nominal and indicates a high 

likelihood of success in the future. More discussion on the control algorithm’s 

performance during these flights is included in Youds et al. (2023). 

5.2 Future Work 

More flight tests are already planned for the remainder of 2023, specifically aiming to fly 

several times with the active control system enabled. Future work will make use of the 

existing datasets to improve confidence in the system and increase performance further. 

For example, adaptive control techniques could be employed, using real flight data to 

tune the next iteration of the Aptos control algorithm. 

It is also recommended that hardware-in-the-loop testing is conducted using flight data 

as further improvements in performance can likely be found in the optimisation of the 

embedded software running the algorithm.  
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Appendix A – Supporting Formulae Derivation 
 

This appendix has been lifted from Youds (2022) to support the derivation of the 

aerodynamic equations in Chapter 3. 

Normal Force Coefficient 

The forces acting on the rocket in the body frame of reference can be divided into those 

acting axially, i.e. along the 𝑥𝐵 axis, and those acting radially, i.e. normal to the 𝑥𝐵 axis.  

The axial force components generally act through the rocket’s CG, or at such a small 

offset that the resulting moments are much smaller than those generated by the normal 

force components. Only the rocket’s rotational motion is of interest here and therefore 

the axial force components have been omitted from the model. 

Assuming that the thrust from the motor acts directly along the 𝑥𝐵 axis, the only normal 

force components acting on the rocket are from gravity, when flying at a non-zero 

pitch/yaw angle, and from aerodynamic lift and drag. Rockets fly at very small pitch and 

yaw angles, and therefore the gravity component can generally be neglected with little 

effect on the model’s accuracy.  

Niskanen (2009) proposes that this aerodynamic normal force, 𝑁, can be calculated by 

(A.1) 

𝑁 =
1

2
𝜌𝑣2𝐴𝑟𝑒𝑓𝐶𝑁 (𝐴. 1) 

Where 𝜌 is the air density, 𝑣 is the freestream air velocity, 𝐴𝑟𝑒𝑓  is a reference area, 

generally taken as the cross-sectional area of the rocket’s fuselage, and 𝐶𝑁  is the 

rocket’s normal force coefficient. 

This normal force is generated by the culmination of lift and drag generated when the 

freestream air flows around the rocket body. Generally, rockets have axisymmetric body 

components and fins with symmetrical aerofoils, and therefore generate no normal force 

when flying at zero angle of attack, 𝛼 = 0. However, for 𝛼 > 0, these forces can be 

significant and greatly affect the rotational motion of the rocket.  

The variation of the normal force with angle of attack is described by 𝐶𝑁𝛼, the angle of 

attack derivative of the normal force coefficient – referred to as the normal force 

coefficient derivative from here on. Niskanen (2009), extending on the work of 

Barrowman (1967), states that the normal force coefficient varies linearly with angle of 

attack, for small values of 𝛼. This relationship is given in equation (A.2). 
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𝐶𝑁𝛼 =
𝜕𝐶𝑁
𝜕𝛼

|𝛼=0  ⇒     𝐶𝑁 ≈ 𝐶𝑁𝛼𝛼 (𝐴. 2) 

Niskanen (2009) provides methods for calculating the normal force coefficient derivative, 

𝐶𝑁𝛼, based on the rocket’s geometry and flight conditions, such as speed and angle of 

attack. 𝐶𝑁𝛼  is calculated for each section of the rocket: nose, body and fins, and then 

summed to find the value for the full vehicle. 

Calculating 𝑪𝑵𝜶  for Axisymmetric Body Components 

The nosecone and fuselage can be treated as two separate axisymmetric body 

components. Niskanen (2009) derives equation (A.3) for finding 𝐶𝑁𝛼 of such 

components. This approximation is very similar to that derived by Barrowman (1967) but 

applies to a larger range of 𝛼 by not assuming that sin 𝛼 = 𝛼. The second term in 

equation (A.3) is used to include the effect of body lift when flying at significant angles 

of attack.  

𝐶𝑁𝛼 =
2

𝐴𝑟𝑒𝑓
[𝐴(𝑙) − 𝐴(0)]

sin 𝛼

𝛼
+ 𝐾

𝐴𝑝𝑙𝑎𝑛

𝐴𝑟𝑒𝑓

sin2𝛼

𝛼
(𝐴. 3) 

Where 𝐴(𝑥) is the area at position 𝑥 along the component’s length, 𝐴𝑝𝑙𝑎𝑛 is the planform 

area of the body component, and 𝐾 ≈ 1.1 is a correction factor. Care must be taken 

when using this equation to avoid singularities at 𝛼 = 0. This is achieved by 

implementing limit conditions, as shown by equations (A.4). 

lim
𝛼→0

sin 𝛼

𝛼
= 1        ,         lim

𝛼→0

sin2𝛼

𝛼
= 0 (𝐴. 4) 

Calculating 𝑪𝑵𝜶  for Fins 

Making use of Diederich’s semi-empirical method, Barrowman (1967) derived equation 

(A.5) to calculate the normal force coefficient derivative for a single fin (Niskanen, 2009). 

(𝐶𝑁𝛼)1 =
𝐶𝑁𝛼0

𝐹𝐷(
𝐴𝑓𝑖𝑛

𝐴𝑟𝑒𝑓
)cos Γ𝑐

2+𝐹𝐷√1+
4

𝐹𝐷
2

(𝐴. 5)

Where 𝐶𝑁𝛼0  is the normal force coefficient derivative of the 2D aerofoil, 𝐹𝐷 is Diedrich’s 

planform correlation parameter, 𝐴𝑓𝑖𝑛 is the planform area of one fin, and Γ𝑐 is the 

midchord sweep angle. 

The 2D aerofoil normal force coefficient derivative, 𝐶𝑁𝛼0 , can be found based on thin 

aerofoil theory, as in equation (A.6) (Niskanen, 2009). 
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𝐶𝑁𝛼0 =
2𝜋

√1−𝑀2
(𝐴. 6)

Where 𝑀 is the local Mach number. Gryphon I-C remains subsonic during flight, 

therefore 𝑀 < 1. 

Diederich provides equation (A.7) for calculating 𝐹𝐷. 

𝐹𝐷 =
𝐴𝑅

1

2𝜋
𝐶𝑁𝛼0

cos Γ𝑐
(𝐴. 7)

Where 𝐴𝑅 is the fin aspect ratio. 𝐴𝑅 = 2𝑠2/𝐴𝑓𝑖𝑛, where 𝑠 is the fin semi-span, can be 

substituted into equation (A.7). Then substituting (A.7) and (A.6) into (A.5) gives an 

equation for the normal force coefficient derivative for a single fin as a function of the 

geometry and the Mach number. This is presented as equation (A.8). 

(𝐶𝑁𝛼)1
=

2𝜋
𝑠2

𝐴𝑟𝑒𝑓

1 +√1 + (
𝑠2√1 −𝑀2

𝐴𝑓𝑖𝑛 cos Γ𝑐
)

2
(𝐴. 8)

 

Niskanen (2009) then shows that the normal force coefficient derivative for 𝑘 fins is found 

by multiplying the value for one fin by the sum of sin2𝛬𝑖 where Λ𝑖 is the dihedral angle 

of the fin relative to the incoming lateral airflow.  

∑(𝐶𝑁𝛼)𝑘

𝑘

𝑖=1

= (𝐶𝑁𝛼)1
∑sin2 Λ𝑖

𝑘

𝑖=1

(𝐴. 9) 

Fortunately, for rockets with three or more equally spaced fins, the sum term reduces to 

𝑘/2. Thus, for Pathfinder, with four fins, equation (A.10) applies. 

(𝐶𝑁𝛼)4 = 2
(𝐶𝑁𝛼)1

(𝐴. 10) 

Finally, a correction term, 𝐾𝑇(𝐵) is applied to account for fin-body interference, defined 

by equation (A.11). 

𝐾𝑇(𝐵) = 1 +
𝑟𝑡

𝑠 + 𝑟𝑡
(𝐴. 11) 

Where 𝑟𝑡 is the body radius at the fin position. Therefore, the final normal force coefficient 

derivative for Pathfinder’s four fins is given by equation (A.12), where (𝐶𝑁𝛼)1 is given by 

equation (3.9). 

𝐶𝑁𝛼𝑓𝑖𝑛𝑠 = 2
(𝐶𝑁𝛼)1 (1 +

𝑟𝑡
𝑠 + 𝑟𝑡

) (𝐴. 12) 
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CP for Body Components 

The centre of pressure of axially symmetric body components can be readily computed 

by equation (A.13) (Niskanen, 2009). 

𝑋𝐶𝑃 =
𝑙 𝐴(𝑙) − 𝑉

𝐴(𝑙) − 𝐴(0)
(𝐴. 13) 

Where 𝑉 is the volume of the component. 

CP for Fins 

The fin centre of pressure location can be obtained from an empirical equation originally 

derived by Barrowman (1967). 

𝑋𝐶𝑃 =
𝑋𝑡
3

𝐶𝑟 + 2𝐶𝑡
𝐶𝑟 + 𝐶𝑡

+
1

6

𝐶𝑟
2 + 𝐶𝑡

2 + 𝐶𝑟𝐶𝑡
𝐶𝑟 + 𝐶𝑡

(𝐴. 14) 

Where 𝑋𝑡 = 𝐶𝑟 − 𝐶𝑡 . This is measured from the leading edge so must be corrected to be 

measured from the nose cone tip before being incorporated into finding the full rocket 

CP. 

Full Rocket CP 

The full rocket centre of pressure is then found from the CP locations of each of the 

individual components along with their respective 𝐶𝑁𝛼 values, as in equation (A.15) 

𝑋𝐶𝑃 =
∑ 𝑋𝐶𝑃𝑖(𝐶𝑁𝛼)𝑖
𝑛
𝑖=1

∑ (𝐶𝑁𝛼)𝑖
𝑛
𝑖=1  

(𝐴. 15) 
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Appendix B – Linearisation 
 

This appendix contains the mathematical derivation of the linearised dynamic equations 

referenced in Chapter 4. 

Roll 

The roll dynamic equation is given by (B.1). 

𝐽𝑅�̇� = 𝐿𝛼[(𝛼 − 𝑥1) cos𝑥1 − (𝛼 + 𝑥2) cos𝑥2 + (𝛽 − 𝑦1) cos𝑦1 − (𝛽 + 𝑦2) cos𝑦2] − 𝐶𝑑𝑝𝑝 (𝐵. 1) 

Expanding the brackets gives (B.2). 

 𝐽𝑅�̇� = +𝐿𝛼𝛼 cos 𝑥1 

−𝐿𝛼𝑥1 cos 𝑥1 

−𝐿𝛼𝛼 cos 𝑥2 

−𝐿𝛼𝑥2 cos 𝑥2 

+𝐿𝛼𝛽 cos 𝑦1 

−𝐿𝛼𝑦1 cos 𝑦1 

−𝐿𝛼𝛽 cos 𝑦2 

−𝐿𝛼𝑦2 cos 𝑦2 

−𝐶𝑑𝑝𝑝 

(𝐵. 2) 

The canard deflections are limited at ±10° and therefore it can be assumed that cos 𝑥1 =

cos 𝑥2 = cos 𝑦1 = cos 𝑦2 = 1, with only 1.5% error. Applying this assumption to (B.2), 

collecting like terms and dividing through by 𝐽𝑅 gives (B.3), the linearised roll equation. 

�̇� = −
𝐿𝛼
𝐽𝑅
𝑥1 −

𝐿𝛼
𝐽𝑅
𝑥2 −

𝐿𝛼
𝐽𝑅
𝑦1 −

𝐿𝛼
𝐽𝑅
𝑦2 −

𝐶𝑑𝑝
𝐽𝑅
𝑝 (𝐵. 3) 

Pitch 

The pitch dynamic equation is given by (B.4). 

𝐽𝐿�̇� + (𝐽𝑅 − 𝐽𝐿)𝑝𝑟 = 𝑀𝛼[(𝛼 − 𝑥1) cos 𝑥1 + (𝛼 + 𝑥2) cos 𝑥2] − 𝐶1𝛼 − 𝐶2𝑞 (𝐵. 4) 

Rearranging and expanding the brackets gives (B.5). 
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The final term is not yet linear as it contains the product of two variables. Taylor series 

linearisation can be applied to the final term, as in (B.6). 

𝑓(𝑝, 𝑟) = −(𝐽𝑅 − 𝐽𝐿)𝑝𝑟 

⇒ 𝑓(𝑝, 𝑟) ≈ 𝑓(�̅�, �̅�) +
𝑑𝑓

𝑑𝑝
|𝑝=�̅� (𝑝 − �̅�) +

𝑑𝑓

𝑑𝑟
|𝑟=�̅�  (𝑟 − �̅�) (𝐵. 6) 

�̅� and �̅� are steady state values, such that �̇� = 0 when evaluated at 𝑝 = �̅� and 𝑟 = �̅�. It 

therefore follows that 𝑓(�̅�, �̅�) = 0. Applying this simplification and substituting in deviation 

variables, defined by (B.7), forms equation (B.8). 

𝑝′ = 𝑝 − �̅�

𝑟′ = 𝑟 − �̅�
(𝐵. 7) 

⇒ 𝑓(𝑝, 𝑟) ≈ −(𝐽𝑅 − 𝐽𝐿)�̅� 𝑝
′ − (𝐽𝑅 − 𝐽𝐿)�̅� 𝑟

′ (𝐵. 8) 

There is an equilibrium in the system when all states in the state vector, 𝐱, equal zero. 

Therefore �̅� = �̅� = 0 and consequently 𝑓(𝑝, 𝑟) = 0.  

Substituting this back into (B.6), applying the small angle approximation to the cosines 

in the first four terms, and dividing through by 𝐽𝐿 gives (B.9), the linearised pitch motion 

equation. 

�̇� = −
𝑀𝛼
𝐽𝐿
𝑥1 +

𝑀𝛼
𝐽𝐿
𝑥2 + (2

𝑀𝛼
𝐽𝐿
−
𝐶1
𝐽𝐿
)𝛼 −

𝐶2
𝐽𝐿
𝑞 (𝐵. 9) 

Yaw  

The nonlinear yaw dynamic equation is given by (B.10). 

𝐽𝐿�̇� + (𝐽𝐿 − 𝐽𝑅)𝑝𝑞 = 𝑁𝛼[(𝛽 − 𝑦1) cos 𝑦1 + (𝛽 + 𝑦2) cos 𝑦2] − 𝐶1𝛽 − 𝐶2𝑟 (𝐵. 10) 

The same process used to linearise the pitch equation was used for the yaw equation in 

(B.10). This gives (B.11), the linearised yaw motion equation. 

�̇� = −
𝑁𝛼
𝐽𝐿
𝑦1 +

𝑁𝛼
𝐽𝐿
𝑦2 + (2

𝑁𝛼
𝐽𝐿
−
𝐶1
𝐽𝐿
)𝛽 −

𝐶2
𝐽𝐿
𝑟 (𝐵. 11) 

 

 𝐽𝑅�̇� = +𝑀𝛼𝛼 cos 𝑥1 

−𝑀𝛼𝑥1 cos 𝑥1 

+𝑀𝛼𝛼 cos 𝑥2 

+𝑀𝛼𝑥2 cos 𝑥2 

−𝐶1𝛼 

−𝐶2𝑞 

−(𝐽𝑅 − 𝐽𝐿)𝑝𝑟 

(𝐵. 5) 
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State Space Formulation 

Equations (B.3), (B.9), and (B.11) provide a linear approximation of the rotational motion 

of the rocket in terms of the states, 𝐱, inputs, 𝐮, and disturbances, 𝐝. This linear system 

of equations can be written as matrices in state space form, as in (B.12). 

{
 
 

 
 
𝑝
𝑞
𝑟
�̇�
�̇�
�̇�}
 
 

 
 

=

[
 
 
 
 
 
 
 
 
 
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0 0 0 −
𝐶𝑑𝑝
𝐽𝑅

0 0

0 0 0 0 −
𝐶2
𝐽𝐿

0

0 0 0 0 0 −
𝐶2
𝐽𝐿 ]
 
 
 
 
 
 
 
 
 

{
 
 

 
 
𝜙
𝜃
𝜓
𝑝
𝑞
𝑟}
 
 

 
 

+

[
 
 
 
 
 
 
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0

−
𝐿𝛼
𝐽𝑅

−
𝐿𝛼
𝐽𝑅

−
𝐿𝛼
𝐽𝑅

−
𝐿𝛼
𝐽𝑅

−
𝑀𝛼

𝐽𝐿
+
𝑀𝛼

𝐽𝐿
0 0

0 0 −
𝑁𝛼
𝐽𝐿

+
𝑁𝛼
𝐽𝐿 ]
 
 
 
 
 
 
 
 
 

{

𝑥1
𝑥2
𝑦1
𝑦2

}+

[
 
 
 
 
 
 
 

0 0
0 0
0 0
0 0

2
𝑀𝛼

𝐽𝐿
−
𝐶1
𝐽𝐿

0

0 2
𝑁𝛼
𝐽𝐿
−
𝐶1
𝐽𝐿 ]
 
 
 
 
 
 
 

{
𝛼
𝛽} (𝐵. 12) 
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Appendix C – Expected Parameter Variations 
 

Table 2 displays the expected variations of parameters within the nonlinear model. 

These were generally obtained from taking the worst-case tolerance stack-up from the 

component’s respective manufacturing processes. A very conservative approach was 

taken for aerodynamic components, especially those manufactured by hand, such as 

the rear fins.  

The ±50% variation on the canard lift coefficient derivative is to account for the 

inaccuracy of the aerodynamic simulations. 

Table 2 - Parameter variations used for the robustness analysis of the control system. 

Parameter Nominal Value Variation Units 

Radial moment of inertia 𝐽𝑅 * ± 20% kg m2 

Longitudinal moment of inertia 𝐽𝐿 * ± 20% kg m2 

Rocket body diameter  𝑑𝑏𝑜𝑑𝑦 0.103 ± 0.003 m 

Nose cone length 𝑙𝑛𝑜𝑠𝑒  0.507 ± 0.010 m 

Rocket body length 𝑙𝑏𝑜𝑑𝑦 1.563 ± 0.010 m 

Fin semi-span 𝑠𝑠𝑓𝑖𝑛 0.14 ± 0.002 m 

Fin root chord length 𝑐𝑟𝑓𝑖𝑛  0.12 ± 0.002 m 

Fin tip chord length 𝑐𝑡𝑓𝑖𝑛 0.065 ± 0.002 m 

Rocket CG location 𝑋𝐶𝐺 1.32 ± 0.050 m 

Canard CP location (𝑥) 𝑋𝐶𝑃𝑐𝑎𝑛  0.589 ± 0.010 m 

Canard CP location (𝑦) 𝑌𝐶𝑃𝑐𝑎𝑛  0.0865 ± 0.005 m 

Canard CP location (𝑧) 𝑍𝐶𝑃𝑐𝑎𝑛  0.0865 ± 0.005 m 

Canard semi-span 𝑠𝑠𝑐𝑎𝑛 0.07 ± 0.001 m 

Canard root chord length 𝑐𝑟𝑐𝑎𝑛  0.06 ± 0.001 m 

Canard tip chord length 𝑐𝑡𝑐𝑎𝑛  0.05 ± 0.001 m 

Canard lift coefficient derivative 𝐶𝐿𝛼 2.86 ± 50% rad-1 

 

* 𝐽𝑅 and 𝐽𝐿 vary during flight, and their profiles were exported from OpenRocket. The 

variation of ±20% was applied to the full profile before importing into Simulink. This 

maintained the same variation during flight, but shifted it either up or down, depending 

on the value used for that simulation. 
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Appendix D – Canard Moment Diagrams 
 

Figure 5 shows the geometry of the pitch and yaw canard configuration with respect to 

the CG, to aid with understanding the derivation of the dynamics equations in Chapter 

3. 

This diagram shows the 𝑥1 canard. The 𝑥2 canard is hidden behind the rocket body. 

 

Figure 5 - Pitch / yaw canard configuration. 

Figure 6 shows the configuration for the roll axis.  

 

Figure 6 - Roll canard configuration. 
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Appendix E – Enhanced Wind Modelling Results 
 

Figure 7 presents the system response to a varying crosswind both with and without the 

control system enabled. Dryden’s continuous wind turbulence model was implemented 

in Simulink (MathWorks, n.d.), where both the speed and direction of the wind vector 

varies with the rocket’s altitude and attitude. 

 

Figure 7 - System performance in response to a varying wind vector. 


