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Abstract 

This thesis presents the development of a data pipeline designed to aid the active 

vertical stabilisation system of a sounding rocket. The primary objective was to create 

a robust architecture that connects firmware and software components necessary for 

flight control operations of Aptos, a module that contains a secondary set of fins 

actuated individually to stabilise trajectory.  

The project involved the development of a flight firmware in bare metal C, setting up a 

development environment that includes the main loop routine, helper functions, and a 

controller initially modelled in MATLAB and Simulink. Furthermore, methods for storing 

and visualising flight data were established and tested to support the pipeline. The 

system's performance was ultimately tested during a rocket launch campaign, where 

hardware was mounted to a sounding rocket and operated under active control. Data 

was successfully collected during flight, ingested in a centralised database storage unit 

and visualise for further controller gain tuning. 

The projects confirms that a well-integrated data pipeline is beneficial for the 

advancement and refinement of aerospace technologies, particularly in the 

development of flight controllers for sounding rockets.
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Chapter 1.      Introduction 

1.1 Introduction 

Sounding rockets serve as pivotal instruments for atmospheric research and suborbital 

experiments. The flight trajectory of a rocket can be affected by external factors such 

as winds which lead to uncontrolled dispersion and lower apogees [1]. To minimise the 

effects of external factors and improve the flight trajectory, active vertical controllers 

can be used. This report presents the development of an end-to-end data pipeline 

meant to facilitate the active stabilisation of rockets. It focuses on the application of 

Vertical Orientation Systems (VOS) which computes the desired orientation of the 

rocket by controlling a secondary set of fins known as canards [2], [3], [4]. 

The end-to-end data pipeline is enabled through various coding platforms integration. 

It merges low-level firmware, which manages the actuation of the canards, with high-

level software algorithms that process data streams, analyse flight dynamics, and 

execute stabilisation strategies. The following chapters outline the pipeline 

components: firmware development, centralised database, and data visualisation. 

Chapter 2 introduces the concepts, Chapters 3 to 5 detail each component, and 

Chapter 6 discusses system integration, followed by conclusions and future work. 

The report presents a system where firmware and software are integrated elements of 

a single, robust architecture. This perspective is beneficial for the successful 

deployment and improvement of the VOS controller. Such an approach furthers the 

field of aerospace engineering and proposes a unified system that is not widely 

available or standardised in the industry. 

1.2 Individual Project Aim 

The project's aim is to aid the VOS of sounding rockets through the development and 

integration of a software-firmware system. This system incorporates the active control 

of canards and advanced data management tools to support continuous improvement. 

1.3 Individual Project Objectives 

• To complete the firmware development and convert the high level MATLAB 

Simulink controller into bare metal C code. 

• To develop a visualisation and storage tool that aids controller refinement by 

allowing users to make informed decisions after analysing flight data. 

• To integrate the previously defined subsystems into a coherent data pipeline that 

streamlines the development of the VOS flight controller. 
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Chapter 2.      Background and Literature Review 

2.1 Background 

The active control module, namely Aptos, utilises four independently actuated servos 

and fins (canards) situated in the midsection of the sounding rocket. The rocket is 

vertically stabilised by the fins’ deflection’s that generate steering moments. Now in its 

second year of development, the focus has shifted towards an overhaul of the 

firmware, software, and hardware required to operate the controller. This year's work 

builds upon the previous year's foundational work [5], [6], during which two launches 

were conducted without the control activated. This happened due to insufficient testing 

and hardware reliability concerns. As a result, the work presented in this report aims 

to streamline the development process of the controller and enhance its safety. 

The concept of data pipeline, in computing, refers to a structured series of nodes, 

where the output of one node is the input of the next [7]. Data pipelines are designed 

to improve the flow of data from the source to the destination by automating the 

process and thereby reducing the requirement for manual involvement. Data pipelines 

can come in two different forms: Extract-Load-Transform (ELT) or Extract-Transform-

Load (ETL) [8]. In this context, as illustrated in Figure 2.1, an ELT system was 

developed to use the computational resources available on the ground rather than 

processing data during flight. Data is extracted from the onboard computer post-flight, 

including atmospheric readings and controller metrics, which are then captured and 

stored locally on a NOT-AND (NAND) Flash memory unit. After the extraction step, 

data is loaded on a centralised database from where it can be visualised and 

postprocessed. To improve the controller further, data can be transformed in a format 

that is compatible with the input to the MATLAB/Simulink controller simulations. By 

doing this, the gain tuning can be performed using real-flight data. 

 
Figure 2.1 Data Pipeline Overview 

2.2 Literature Review 

In rocketry applications, there is a variety of technologies employed for data pipelines 

across teams and projects. An overview was conducted to analyse how individual 

teams have selected methodologies and components in their data architectures. This 

analysis creates a broader understanding of the existing solutions within the field of 

aerospace engineering, specifically low cost sounding rocketry. 
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In sounding rocket projects, Arduinos and Teensy are utilised frequently as the flight 

computer processing unit. A flight computer processing unit is a device that controls 

the aerospace vehicles, processing data from onboard sensors. These pre-made 

boards contain all of the circuitry needed for the processor unit and can be paired with 

premade breakout sensor boards. The use of these systems has been identified in 

various projects such as the Helen project [9] and the Gryphon I rocket launched by 

the Leeds University Rocketry Association (LURA) [10]. These boards are favoured for 

their ease of prototyping, although they often face limitations in flexibility due to 

predefined libraries and have high costs. Additionally, many groups, such as Ohio’s 

University Rocketry team [11], avoid the use of their own flight hardware and rely on 

the readings from Commercial-Off-The-Shelf (COTS) flight computers such as the 

Altus Metrum Series [12], restricting their capabilities further. 

For more complex applications, other rocketry teams have adopted more powerful 

microcontrollers such as the NXP chips, GD32 and ARM-based platforms like the 

STM32, such as [13] and [14], which required more advanced C programming. These 

alternatives provide greater flexibility at the cost of increased complexity. Despite the 

complexity, a lower level understanding of the system helps with debugging. For 

example, the launch vehicle TEXUS/MAXUS [15] integrated five different on-board 

experiments that had a custom built data collection system. 

In the context of data storage for sounding rocketry teams, there is no standardised 

database system in place, nor are there centralised records of sounding rocket 

launches at the United Kingdom (UK) national level. The UK Rocketry Association 

(UKRA) is recognised as the primary information source for rocketry in the UK. 

Although there has been an initiative to establish a database for amateur rocketry 

teams [16], the necessary infrastructure is yet to be implemented. The absence of a 

unified system has shifted the focus of the review towards general purpose, lightweight 

and intuitive database platforms. Database options are detailed in Section 4.2. 

In terms of rocket flight visualisation, there seems to be no publicly available dashboard 

technology specifically developed by university rocketry teams. However, individuals 

and independent groups have developed dashboards by analysing flight data from 

commercial aerospace companies such as SpaceX [17], [18]. These dashboards 

contain widgets that display general information about the launch vehicle and some 

telemetry information about the flight stages timings. Additionally, smaller groups have 

released dashboards tailored for real-time testing of the sensors on flight hardware 

[19]. These platforms enable users to connect physical boards directly to a device, 

extract sensor information and display readings via the web interface dashboard. 



4 

 

Chapter 3.      Firmware Development 

3.1 Introduction 

Firmware is specialised software that is embedded in the non-volatile memory of a 

hardware device. The hardware platform used is a custom Printed Circuit Board (PCB) 

that is controlled by a STM32L4R5ZI-P microcontroller (MCU). An STM32 refers to a 

family of 32-bit MCUs integrated circuits by STMicroelectronics. The peripherals, any 

external component connected to the MCU, and internals, any registers that are 

directly inside of the processor unit, were set manually using custom C drivers and 

setup files. The setup process is described in the subsequent sections and the 

codebase is available publicly on GitHub [20]. 

C has emerged as the most appropriate programming language, as it is versatile, 

performant and portable. A custom bare metal system was developed, where firmware 

operates directly on hardware without an intermediate operating system (OS). This 

setup allows for more control over hardware resources, which is ideal in real-time 

applications, such as a flight computer that runs on an STM32 embedded platform.  

3.2 Firmware Setup 

The firmware was developed inside the Visual Studio Code Integrated Development 

Environment (VS Code IDE), a tool that can support C code and direct interaction with 

hardware for debugging purposes through the inspection of memory addresses.  

In the context of bare metal development, a series of configurations are needed for the 

compilation of the firmware on to the target MCU [21]. The high level steps include the 

setup of memory and registers addresses, the configuration of the interrupt vector table 

for error handling and the creation of startup code that initialises the memory stack. 

Additionally, a linker script is required to define the memory layout of the application. 

Internal configurations such as General Purpose Input/Output (GPIO), system ticks for 

timekeeping or Universal Asynchronous Receiver/Transmitter (UART) for serial 

communication are defined. Furthermore, to facilitate debugging and output, print 

statements are redirected to UART. Appendix D should be checked for a more detailed 

explanation of the firmware setup. 

3.3 Flashing Methodology 

The hardware setup involves powering the board either through a 7.4V battery or a 

Universal Serial Bus (USB) connection. A Nucleo-144 board, which incorporates an 

ST-LINK/V2 in-circuit debugger/programmer, is employed to upload the compiled code 
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(flashing). Flashing involves writing the compiled code to the non-volatile memory of 

the MCU, which allows the program to be stored permanently, even when the device 

is turned off or restarted. The connection between the flight computer and the Nucleo 

board is established via a 4-pin Serial Wire Debug (SWD) header. Since the ST-Link 

interface does not support output display from the MCU, an additional serial connection 

is needed. The UART1 pins are exposed on the PCB and connected to a serial 

interface linked to the computer via USB. Data output is monitored through a PuTTY 

terminal session which facilitates the debugging of the programmed firmware. The 

hardware setup can be visualised in Figure 3.1. 

 

Figure 3.1 Flashing procedure for the custom Aptos PCB via a Nucleo-144 

A procedure was put into place to flash code on the flight computer MCU. Firstly, the 

development environment was configured as described in the Appendix B. Then, the 

firmware was compiled into executable code by navigating to the code repository in a 

terminal and running the make flash command. 

3.4 Firmware Development  

The firmware development involved a collaborative effort from various team members, 

but the following sections cover the author’s main areas of focus. The development 

cycle was completed through firmware implementation, debugging and testing.  
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A simplified version of the general firmware loop can be viewed in Figure 3.2. For a 

detailed view, refer to Appendix A. The code configured the STM32 MCU and initialised 

the communications with onboard sensors using Serial Peripheral Interface (SPI) and 

UART communication. This included the initialisation of drivers for the barometer 

sensor, accelerometer, Inertia Measurement Unit (IMU), and the NAND Flash memory.  

 

Figure 3.2 Simplified Firmware Flow Diagram (extensive diagram in Appendix A) 

The flight computer captured sensor readings at frequencies that varied according to 

different flight phases, as listed above. During the ascend, the system recorded at a 

high frequency of up to 1000 Hz to ensure a comprehensive capture of the rocket’s 

performance under maximum dynamic stress and rapid environmental changes, which 

are most pronounced during this phase. For the descent and landing phases, where 

changes are more gradual, the recording frequency was reduced to 100 Hz, optimising 

data storage without compromising the quality of the information gathered. 

Data from sensors was stored in a circular buffer, designed to hold up to 50 readings, 

which helped to reduce noise by calculating median values and applying sensor fusion 

techniques for more accurate state determination. The custom-developed firmware 

used the buffer to record data at the moment of take-off. In contrast, most COTS [12] 

systems commence recording post take-off, thus missing several initial readings. The 

system was designed to capture the early stages of flight. 

Custom functions were implemented to detect lift-off through altitude offsets and 

acceleration triggers, to calculate vertical velocity from pressure, and identify landing 

by low gyroscope standard deviation and predefined ground pressure threshold levels. 

The use of multiple sensor readings for a single flight stage transition ensured that the 

system could respond appropriately to dynamic conditions throughout the flight.  

The existing LQR (Linear-Quadratic Regulator) controller and servo mechanisms were 

integrated to adjust the vehicle's flight controls based on processed sensor data. Data 

from sensors and control outputs were compiled into a structured format (FrameArray), 

timestamped, and logged into NAND flash storage for retrieval and analysis. 
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The control algorithm, originally developed in MATLAB and Simulink, was translated 

into C and embedded onto the firmware. The LQR sourced from the previous year 

controller [5] and firmware [6], were used as guidance. Further steps were taken to 

improve the controller's execution speed, by removing unnecessary loops, replacing 

memory draining variables with pass-by-reference pointers, unrolling loops to process 

multiple values simultaneously. The primary sensor for the LQR, the gyroscope, was 

initialized at various rates to determine the system's minimum operational frequency. 

Through trial and error, it was found out that the rates would have a stable output above 

100 Hz. Detailed explanations of the controller logic can be found in Appendix C. 

Data from the IMU sensor, which includes a three-axis gyroscope and accelerometer, 

determines the orientation of the launch vehicle. Raw gyroscope data, expressed as 

Euler angles (roll, pitch, and yaw), risks gimbal lock—a condition causing loss of one 

degree of freedom. To avoid the this, gyroscope data was converted into Quaternions, 

represented as four scalar values: qw (the real part) and qx, qy, qz (the imaginary part), 

[22]. The vehicle orientation was updated in quaternion format. The state is then 

converted back into Euler angles as input into controller. This conversion is needed 

because the controller is designed around Euler angles. Figure 3.3 was created to aid 

the visualisation of the canards expected deflection when motion is applied. 

To correctly determine servo deflections from the 

controller, the gyroscope data must be mapped to 

their corresponding gains. Due to an alignment 

discrepancy between the IMU output and the 

controller's expected input, an axis conversion was 

implemented,  as outlined in Figure 3.4. The 

controller was configured for a left-hand 

coordinate system, contrasting with the right-hand 

coordinate data output from the IMU gyroscope. 

Moreover, due to the vertical orientation of the 

board, the roll and pitch axis were reverted. 

Figure 3.4 Coordinate System before 
correction (left) and after correction 

(right) 

Figure 3.3 Canard Expected Deflection during yaw (left), roll (centre) and pitch (right) 
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3.5 Firmware Testing 

Each sensor custom driver functionality was evaluated through a unit testing 

procedure, where individual drivers were isolated to retrieve data. For more advanced 

drivers, such as those handling orientation, testing was conducted with a mobile phone 

application named Sensor Logger, which calculates the phone's position using Euler 

and Quaternions [23]. To validate the conversion process, the board was physically 

attached to the mobile phone and moved along the roll, pitch, and yaw axes, as shown 

in the Figure 3.5. The Quaternions calculated using the Aptos firmware closely follow 

the readings from the mobile app, confirming the accuracy of the orientation. 

 
Figure 3.5 Comparison between Sensor Logger Quaternions and flight computer Quaternions 

The main loop firmware testing involved placing the flight computer inside a vacuum 

chamber to simulate flight conditions. The chamber's air pressure was reduced to -

0.6bar at the highest pump rate to emulate the atmospheric conditions encountered 

during flight. Despite the limited pump rates, the results confirmed that the barometer's 

calculations were accurate to determine the transitions between flight stages. 

The flight test for the Aptos module took place on April 14, 2024, 

during which the system was successfully launched with active 

control enabled. The board correctly transitioned through the flight 

stages, and notable oscillations were observed, which were 

attributed to the control’s corrective actions. However, the test 

revealed a flaw in the NAND flash routine, as servo four data was 

missing. This happened because the memory address of servo four 

was overwritten, by mistake, by the bits used for data correction. 

Additionally, while the servo outputs were intentionally limited to ±15 

degrees for safety reasons, the data logged was the capped value 

rather than the actual angle produced by the controller. 
Figure 3.6 Aptos 

Flight 
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Chapter 4.      Data Processing and Storage 

4.1    Introduction 

The subsequent phase in the pipeline evolves the storage of the collected data. A 

database serves as a structured platform for storing, retrieving, and managing data, 

enabling access and manipulation of flight information. The aim is to create a 

centralised flight record system that will serve as a long-term repository for flight data. 

4.2   Data Storage Comparison 

The database requirements focus on collection, storage, retrieval, accessibility, and 

integration [24]. The database must accommodate numerical, text, and time data 

types, all within a modular framework to facilitate future expansion. For data retrieval, 

the system requires quick search capabilities, as it is meant to manage multiple 

concurrent queries when flight data is requested by users. Various database platforms 

were evaluated such as MySQL, PostgreSQL, which offers robust security [25], 

MongoDB, which allows for flexible data structures, and InfluxDB, which specialises in 

time series data [26]. MySQL stands out for its widespread adoption, high storage 

capacity, and intuitive interface. The ease of setting up and managing MySQL, coupled 

with its familiar relational database environment, swayed the decision in its favour. 

4.3  Data Storage Architecture 

A local MySQL instance named "aptosdb" was created, along with its structure, 

designed to organise information into subject-based tables. The database operated on 

a local system, meaning it stores and manages data on the device where it is installed. 

Appendix E outlines the database structure, which mirrored the master structure used 

in the firmware for managing data on the NAND Flash. In MySQL, a table is a 

structured format to store data in rows and columns, where each column holds a type 

and each row corresponds to a record. The database features three tables linked by a 

one-to-many relationship, meaning a single record from one table (primary table, 

"flight") can be associated with multiple records in the other tables ("flight_data" and 

"control_command") via a unique key. The primary table, "flight", stored general 

information. Meanwhile, "flight_data" included the sensor readings and 

"control_command" recorded controller information, specifically servo deflection 

angles. The two tables include timestamps and default values for all entries to avoid 

errors with potential undefined raw entries. MySQL provides an interactive terminal 

that was used to document and prepared the scripts needed in the following phase. 
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Chapter 5.      Data visualisation 

5.1 Introduction 

A web-based application, the user-facing component of the system, was developed to 

facilitate intuitive data visualisation from the databases. This tool promotes more 

informed decision-makings and facilitates the identification of trends and anomalies 

within the dataset. 

For this component of the pipeline, a new web application was developed, called 

“LURA Dash”. The following sections detail the backend and frontend components. 

The backend is tasked with the application’s logic and data processing, while the 

frontend focuses on user interaction and visual integration. 

5.2 Backend Framework Selection 

The following requirements were selected: simplicity, to accommodate members with 

less web-based experience; flexibility, to keep the tool computationally lightweight 

without heavy dependencies; and extensibility, to allow for future features such as user 

authentication. A Python-based framework was selected to leverage its widespread 

popularity and ease of integration with MySQL databases. The ideal framework should 

have a solid foundation of user guides and resources to address common issues. 

Flask, a Python based web framework, was chosen for its Representational State 

Transfer (RESTful) request handling, built-in development server, and integrated 

debugger that aids error correction [27]. Compared to alternative frameworks — 

Django's complexity, CherryPy's inadequate documentation, and Bottle's limited 

community [28] — Flask stands out as the most pragmatic choice. Its strong 

community support and comprehensive documentation ensure a smooth development 

process, making it an accessible and powerful tool for developers of all skill levels. 

5.3 Framework Development 

Flask served as the backbone of “LURA Dash”. It facilitated the creation and 

management of RESTful API (Application Program Interface) endpoints. A RESTful 

API is an architectural style for an API that uses Hypertext Transfer Protocol (HTTP) 

requests to access and use data [29]. These endpoints were defined to handle specific 

functionalities such as data retrieval, data storage, and dynamic content delivery. Each 

endpoint was mapped to a Python function, making it straightforward to implement 

logic that interacted directly with the backend database. The API was designed with a 

clear structure where each route was associated with HTTP methods that defined 
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client interactions with the server. For instance, GET requests fetched data and POST 

requests submitted new data. Table 5.1 lists the endpoints that can be accessed. 

Table 5.1 Web Endpoints 

Endpoint Method Description Response 

‘/get-flights’ GET 
Returns a list of all flights 

from the database 

JSON with a list of flights 

‘/get-flight-

data’ 
GET 

Returns detailed flight data 

based on the flight ID 

JSON with flight details and 

associated flight data 

‘/get-db-

tables’ 
GET 

Lists all database tables JSON with a list of database 

tables 

‘/get-db-

columns’ 
GET 

Lists all columns for a 

specified table. 

JSON with column details of 

a specified table. 

‘/get-db-

column-data’ 
GET 

Retrieves data for a specified 

column in a specified table 

JSON with data from the 

specified column 

‘/get-db-table-

data’ 
GET 

Retrieves all or filtered data 

from a specified table 

JSON with data from the 

specified table 

‘/upload’ POST 
Stores uploaded flight data 

into the database 

Confirmation message of 

data storage 

‘/flight-data’ 
GET  

POST 

Serves the main page of the 

web application 

HTML of the main page 

‘/database’ 
GET  

POST 

Serves the database page of 

the web app 

HTML of the database page 

‘/add-data’ 
GET  

POST 

Serves the data ingestion 

page of the web app 

HTML of the data ingestion 

page 

‘/export-data’ 
GET  

POST 

Serves the data extraction 

page and handles data export 

HTML of the data extraction 

page of exported CSV file 

To manage database interactions, SQL Alchemy was used as the Object-Relational 

Mapping (ORM) tool. The ORM facilitates the communication between the application 

and the database by using high-level entities such as classes, which mirror the tables 

in the database [27]. Models in SQL Alchemy defined the structure of the database, 

which simplified tasks like querying the database and manipulating data entries. 

For the frontend, Vanilla JavaScript was used to make the application lightweight. This 

choice avoided the overhead associated with larger frameworks. JavaScript interfaced 

with the Flask backend via AJAX calls, fetching and posting data asynchronously to 

provide an uninterrupted user experience without the need for page reloads. 

5.4 LURA Dash Features 

“LURA Dash” offered multiple pages that enabled users to interact with data in various 

formats. The main tab, illustrated in Figure 5.1, allowed users to select a flight and 

display it on the screen. The interface featured widgets including an altitude versus 

time graph, vertical velocity and acceleration, and a flight path representation based 

on sensor fusion, along with other statistics. The "Run from Beginning" button played 

an entire flight. Users could stop at any point to examine a particular moment in time. 
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Figure 5.1 Main LURA Dash tab, data is displayed from the active controlled test flight 

LURA Dash included tabs for easy handling of CSV-formatted data from the flight 

computer. Users could upload the flight data into the database using the tool shown 

on the left. Once visualised and validated, any flight data could be formatted in the 

appropriate form for the input of the gain tunning in MATLAB using the tool on the right.  

The raw flight data did not match the input format used for the controller gain tuning. 

The following parameters—altitude, vertical velocity, mass, longitudinal moment of 

inertia, rotational moment of inertia, centre of gravity location and Mach number—were 

derived from the raw values as the equations shown in Appendix F. After conversion, 

the data was compiled into a CSV file. This file could then be integrated into MATLAB, 

to enable the tuning of the controller with real-world data—a significant enhancement 

from the previous reliance on simulated data alone. 

Figure 5.2 Pages on LURA Dash: the import of a new flight in the database (left)  

and the export of a flight into a MATLAB controller input format (right) 
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Chapter 6.      Pipeline Integration 

6.1      Introduction 

The final phase of the project was 

marked by the integration of all 

components into a cohesive data 

pipeline. This process was used 

to validate the system's 

performance against the 

anticipated outcome from the 

MATLAB simulation and maintain 

compatibility between stages. 

The architecture is illustrated in 

Figure 6.1,  which demonstrates 

the data flow, starting from 

collection and storage, followed 

by its conversion in various 

formats, which enables transition 

among distinct subsystems. 

The effectiveness of the integration was tested following a flight campaign. Data was 

extracted from the flight computer using PuTTY’s serial terminal interface and then 

converted to CSV format. The dashboard required users to enter details such as the 

rocket’s name, engine type, date, time and wind conditions. Following data 

visualisation, the information was then exported in a modified CSV format suitable for 

recalibrating the MATLAB model’s gains. The pipeline eliminated the need for any 

custom scripts or additional steps for data conversion. 

6.2      Pipeline Discussion and Results 

6.2.1 Pipeline Throughput 

In the post-flight evaluation, the data pipeline's throughput was quantified at 

approximately 0.622 MB per minute, which includes the duration of data retrieval from 

the flight hardware to its eventual ingestion into the database. The primary constraint 

was the NAND Flash's read speed, which currently outputs approximately 88 readings 

per second. At 100Hz, the total test flight yielded 6557 readings, which translates to 

74.098 seconds dedicated solely to data extraction. An additional source in processing 

time is attributed to the manual transfer of the CSV file from the flight hardware. It was 

Figure 6.1 System Integration 
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deemed appropriate for the following firmware iteration to have a more optimised 

reading routine for the NAND Flash to reduce the time footprint of the data extraction 

process and, by extension, the overall efficiency of the pipeline. 

When the flight results were ingested into the database via the dashboard, the system 

required 6.227 seconds. To assess scalability, the system was subjected to a 

simulated data increase by a factor of ten, 65570 entries corresponding to about 

12.418 hours of flight. The findings revealed a linear performance, with only a nominal 

increase in the database ingestion period to 58.263 seconds. 

6.2.2 Storage Capabilities 

During the test launch, the data acquisition system used 2416 Kb of storage, with the 

data collection process spanning 74.092 seconds. Given the small storage 

requirements, it is anticipated that the database can accommodate data from multiple 

future flights, even with substantial increases in data acquisition rates. For instance, 

elevating the main loop frequency from 1000Hz to 3000Hz, or extended flight durations 

due to factors such as wind drift or premature deployment of the main parachute, would 

likely not inflate the data size beyond 20 Mb for each launch. 

6.2.3 Cloud Hosting Implications 

This projection aligns with the planned transition to cloud-based storage solutions. 

Utilising a service such as Cloud SQL, it is estimated that the cost would remain 

economical at approximately $2.57 per month, as indicated by current pricing models 

[18]. This calculation is based on a lightweight 50 Gb database instance, operational 

24 hours a day, tailored to the team’s needs that do not require constant database 

access. As an alternative, leveraging a custom server setup with a Raspberry Pi, 

another small single-board computer, could offer a cost-free solution while still fulfilling 

the project's data hosting requirements. 

6.2.4 Adaptability 

Additionally, the pipeline's architecture is adaptable. Modifications to the firmware, 

provided they maintain standard readings—barometric pressure, acceleration, IMU, 

temperature, and GNSS data—do not impact the database or the dashboard interface. 

Similarly, updates to the control system are accommodated as long as the input data 

derived from flight simulations are consistent. As a result, the core functionality of the 

architecture remains unaffected by changes in hardware or software. The pipeline is 

inheritably flexible and can evolve with the project’s requirements. 
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Chapter 7.  Conclusion and Future Work 

7.1      Achievements 

The project met all its objectives, contributing to the development of an active 

stabilisation system for sounding rockets. Firstly, the flight firmware that supports an 

active controller was developed in C, bare metal. The setup included the main routine, 

helper functions, and controller logic initially created in MATLAB. Methods for storing 

and visualising flight data were also developed and tested. These components were 

successfully integrated into a data pipeline that streamlines the development and 

refinement of a sounding rocket VOS stabilisation system.  

7.2     Conclusion 

This report details the design and implementation of a data pipeline integral to a rocket 

flight controller application, which bridges firmware and software components. This 

system handled the data demands associated with a rocket launch and multiple 

additional tests, achieving a throughput of approximately 0.622 MB per minute while 

maintaining data integrity. 

A significant feature of the project was the incorporation of real-flight data into the 

MATLAB-based controller, which aided the analytical capabilities during post-flight 

analyses. This allowed for more modifications, as there was a better understanding of 

the dataset and a reassurance it is correct as it was real life. 

The successful implementation of the data pipelines not only fulfilled the initial project 

goals but also laid a solid groundwork for future work in aerospace control systems. 

The system was designed to require minimal user intervention, thus optimising the 

efficiency of data flow across various components of the pipeline. This is beneficial for 

the improvement of the VOS control of sounding rockets equipped with canards. 

7.3     Future Work 

For future improvements, several steps are recommended to improve the pipeline: 

• Data Throughput: A more efficient routine for reading NAND Flash could decrease 

data extraction times and increase throughput. 

• Dashboard Functionality: New widgets could be added to the dashboard to show 

how the canards respond to the orientation of the rocket. This would allow for better 

control and understanding of their impact on stabilisation. 

• Cloud Integration: Moving both the database and the web application to the cloud 

would allow team members to access data from any location, not just locally.  
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Appendix A – Firmware Flowchart 

 
Figure A.1 Detailed Firmware Flow Diagram 
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Appendix B – Dashboard GitHub README file 

Overview 

LURA Dash is a new web interface tool designed by Leeds Universiy Rocketry 

Association for visualisation of flight data. It offers multiple pages that enable users to 

interact with data in various formats. 

The main page features widgets including an altitude versus time graph, vertical 

velocity, vertical acceleration, and a flight path representation based on sensor fusion, 

along with other statistics. The "Run from Beginning" button plays an entire flight. 

Users can stop at any point to examine a particular moment in time. LURA Dash 

includes tabs for easy handling of CSV-formatted data from the Aptos flight computer. 

Once visualised and validated, any flight data can be formatted in the appropriate form 

for the input of our custom controller in MATLAB. 

Features 

- load flight off the flight computer 

- visualise the final outcome of the flight 

- play the entire rocket flight and pause as needed 

- visualise the data straight from the database; apply filters as needed 

- import CSV file with new flight 

- export to CSV that is compatible for the comtroller tuning in MATLAB 

Structure 

The repository is structured as follows: 

web_server 
|──README.md 
| 
|──database            
|   ├──commands.py         # MYSQL Database queries 
|   ├──connect.py              # MYSQL Database configuration 
|   ├──fakedata.py             # Fake data generator for the database 
|   └──models.py               # MYSQL Database tables definition 
| 
|──static                   
|   ├──3d                      # 3D models using in the frontend 
|   ├──assets                  # Images using in the frontend 
|   ├──css                     # The main css file 
|   └──js                       
|     ├──add-data.js           # Contains functions used to ingest new data in the db 
|     ├──custom-card.js       # Custon widgets class 
|     ├──custom-data.js       # Custon flight data class 
|     ├──database.js           # Database interacion from frontend 
|     ├──export.js             # Export flight into csv for MATLAB input 
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|     ├──flight.js             # Functions used to display flight data on the 
dashboard. 
|     ├──load-flight-data.js  # Code for the worker that loads the flight data. 
|     └──telemetry.js          # Display telemetry data on the dashboard. 
| 
|──templates                
|   ├──add-data.html          # HTML page that allows user to input flight data 
|   ├──base.html               # HTML template for the all the rest of the pages 
|   ├──database.html          # HTML page that allows user to filter the database  
|   ├──export-data.html      # HTML page to export data to Simulink input 
|   ├──flight-data.html        # main HTML page for flight data visualisation  
|   ├──flight.html            # HTML template for the flight related pages 
|   └──telemetry-data.html # HTML page for the telemetry connection 
| 
──app                         # Entry point for the application 
 
 
Requirements 

- python 3.6+ 

- flask 

- flask mysql connector 

- flask SQLAlchemy 

 

To set up the webserver 

- install python 3.6+ 

- setup virtual environment using pip install virtualenv 

- create environment using virtualenv env 

- activate .\env\Scripts\activate 

- pip install flask 

- pip install flask-cors 

- pip install sqlalchemy 

- pip install Flask-SQLAlchemy 

- pip install mysql-connector-python 

 

Trobleshoot 

When debugging the flask app, you might not hit the breakpoint using Visual Studio. 

Make sure toset the "args" from launch.json to --no-debugger, --no-reload go to app.py 

and run the app with debug set to False. 
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Appendix C – Controller Transition from MATLAB to C 

The header file orientation_utils.h provides the necessary definitions and function 

prototypes to convert raw gyroscope data into quaternion and Euler angle formats. 

This file defines types for Euler angles and quaternions, used for orientation 

representation in 3D space, and includes an orientation_data structure that maintains 

the current and previous states of the types. It also declares functions to initialise, 

update, and manipulate orientation data based on inputs from the LSM6DS3 

gyroscope sensor. 

/* 

  Leeds University Rocketry Organisation - LURA 

  Author Name: Alexandra Posta 

  Description: Header file to transform gyroscope raw data to Quateniun 

and Euler 

*/ 

 

#ifndef ORIENTATION_UTILS_H 

#define ORIENTATION_UTILS_H 

 

#include "drivers/LSM6DS3_driver.h" 

#include <math.h> 

 

#define M_PI_F 3.14159265358979323846f 

 

typedef struct Euler { 

    float roll; 

    float pitch;  

    float yaw; 

} Euler; 

 

typedef struct Quaternion { 

    float w; 

    float x; 

    float y; 

    float z; 

} Quaternion; 

 

typedef struct orientation_data { 

    Quaternion current_quaternion; 

    Quaternion current_rate_quaternion; 

    Euler current_euler; 

    Euler current_rate_euler; 

    Euler previous_euler; 

} orientation_data; 
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/** 

   @brief Convert euler angles to quaternion 

   @param e Euler angles 

   @param q Quaternion 

*/ 

void orientation_quaternion_to_euler(Quaternion* q, Euler* e); 

 

/** 

  @brief Initialise the orientation data 

  @note Set the orientation_data structure to 0 to initialise memory 

*/ 

void orientation_init(orientation_data* orientation, LSM6DS3_data* 

_LSM6DS3_data); 

 

/** 

  @brief Update the orientation data based on gyro readings 

  @param dt Time difference in microseconds 

  @param orientation Orientation data structure 

  @param _LSM6DS3_data Gyroscope data 

*/ 

void orientation_update(unsigned int dt, orientation_data* orientation, 

LSM6DS3_data* _LSM6DS3_data, bool pad); 

 

/** 

  @brief Check if rocket is moving based on acceleration vector 

  @param _LSM6DS3_data Gyroscope data 

  @param vector Acceleration vector 

  @return True if the vector is valid 

*/ 

bool OrientationAccelerationVector(LSM6DS3_data* _LSM6DS3_data, float 

vector[]); 

 

/** 

  @brief Check if stationary, to correct gyro drift, based on 

acceleration vector 

  @param _orientation Orientation data structure 

  @param accel Acceleration vector 

  @param correction Quaternion correction 

*/ 

void OrientationAccelerationQuaternion(orientation_data* _orientation, 

float accel[], Quaternion* correction); 

#endif /* ORIENTATION_UTILS_H */ 

Figure C.1 Source code for orientation_utils.h 
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The source file orientation_utils.c, implements functions to transform gyroscope data 

into quaternion and Euler angle formats. The file includes essential functions for 

initialising orientation data, updating it based on gyroscope and accelerometer 

readings, and converting orientation represented by quaternions into Euler angles. 

Additionally, the source file handles coordinate system adjustments and gravity 

correction based on sensor data to maintain accurate orientation tracking despite 

external disturbances. 

/* 

    Leeds University Rocketry Organisation - LURA 

    Author Name: Alexandra Posta 

    Description: Source file to transform gyroscope data to quateniun 

and euler 

*/ 

 

#include "orientation_utils.h" 

 

void orientation_quaternion_to_euler(Quaternion* q, Euler* e) { 

    // XYZ order 

    float qw2 = q->w * q->w; 

    float qx2 = q->x * q->x; 

    float qy2 = q->y * q->y; 

    float qz2 = q->z * q->z; 

 

    // Calculate direction cosine matrix 

    float dcm32 = 2 * (q->y * q->z - q->x * q->w); 

    float dcm33 = qw2 - qx2 - qy2 + qz2; 

    float dcm31 = 2 * (q->x * q->z + q->y * q->w); 

    float dcm21 = 2 * (q->x * q->y - q->z * q->w); 

    float dcm11 = qw2 + qx2 - qy2 - qz2; 

 

    // Calculate euler angles 

    e->roll = (float)atan2(-dcm32, dcm33); 

    e->pitch = (float)asin(dcm31); 

    e->yaw = (float)atan2(-dcm21, dcm11); 

} 

 

void orientation_change_accel_coordinate_system(LSM6DS3_data* 

_LSM6DS3_data) { 

    int32_t temp_y = _LSM6DS3_data->y_accel; 

    _LSM6DS3_data->y_accel = _LSM6DS3_data->z_accel; 

    _LSM6DS3_data->z_accel = -temp_y; 

} 

 

void orientation_init(orientation_data* orientation, LSM6DS3_data* 

_LSM6DS3_data) { 

    float accel_vector[4]; 
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    orientation_change_accel_coordinate_system(_LSM6DS3_data); 

    if (OrientationAccelerationVector(_LSM6DS3_data, &accel_vector)) { 

//try to get an acceleration vector to use as starting angle 

        float pitch_angle_accel = 

atan(accel_vector[1]/sqrt((accel_vector[0]*accel_vector[0])+(accel_vect

or[2]*accel_vector[2]))); 

        float yaw_angle_accel = 

atan(accel_vector[0]/sqrt((accel_vector[1]*accel_vector[1])+(accel_vect

or[2]*accel_vector[2]))); 

 

        // Calculate initial quaternion components based on the 

estimated roll and pitch angles 

        float cy = cos(pitch_angle_accel * 0.5f); 

        float sy = sin(pitch_angle_accel * 0.5f); 

        float cp = cos(yaw_angle_accel * 0.5f); 

        float sp = sin(yaw_angle_accel * 0.5f); 

        orientation->current_quaternion.w = cp * cy; 

        orientation->current_quaternion.x = sy * sp; 

        orientation->current_quaternion.y = cp * sy; 

        orientation->current_quaternion.z = sp * cy; 

 

        orientation_quaternion_to_euler(&orientation-

>current_quaternion, &orientation->current_euler); 

        // Set initial values for previous_euler 

        orientation->previous_euler.roll = orientation-

>current_euler.roll; 

        orientation->previous_euler.pitch = orientation-

>current_euler.pitch; 

        orientation->previous_euler.yaw = orientation-

>current_euler.yaw; 

    } else {  //accel wasn't close enough to 1g 

        // Set initial values for current_quaternion 

        orientation->current_quaternion.w = 1.0; 

        orientation->current_quaternion.x = 0.0; 

        orientation->current_quaternion.y = 0.0; 

        orientation->current_quaternion.z = 0.0; 

        // Set initial values for current_euler 

        orientation->current_euler.roll = 0.0; 

        orientation->current_euler.pitch = 0.0; 

        orientation->current_euler.yaw = 0.0; 

        // Set initial values for previous_euler 

        orientation->previous_euler.roll = 0.0; 

        orientation->previous_euler.pitch = 0.0; 

        orientation->previous_euler.yaw = 0.0; 

    } 

     

    // Set initial values for current_rate_quaternion 

    orientation->current_rate_quaternion.w = 0.0; 
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    orientation->current_rate_quaternion.x = 0.0; 

    orientation->current_rate_quaternion.y = 0.0; 

    orientation->current_rate_quaternion.z = 0.0; 

 

    // Set initial values for current_rate_euler 

    orientation->current_rate_euler.roll = 0.0; 

    orientation->current_rate_euler.pitch = 0.0; 

    orientation->current_rate_euler.yaw = 0.0; 

} 

 

void orientation_change_coordinate_system(LSM6DS3_data* _LSM6DS3_data) 

{ 

    int32_t temp_x = _LSM6DS3_data->x_rate; 

    _LSM6DS3_data->x_rate = _LSM6DS3_data->y_rate; 

    _LSM6DS3_data->y_rate = temp_x; 

    _LSM6DS3_data->z_rate *= -1; 

} 

 

// Update orientation data 

// On the sensor     -> X: PITCH, Y: ROLL,  Z:  YAW (right rule) 

// On the controller -> X: ROLL,  Y: PITCH, Z: -YAW (left rule) 

void orientation_update(unsigned int dt, orientation_data* orientation, 

LSM6DS3_data* _LSM6DS3_data, bool pad) { 

    // Change orientation data to match the controller coordinate 

system 

    orientation_change_coordinate_system(_LSM6DS3_data); 

    orientation_change_accel_coordinate_system(_LSM6DS3_data); 

    float wx = ((float)_LSM6DS3_data->x_rate * M_PI_F / 180.0f) / 

1000.0f; // millidegrees/second -> radians/second 

    float wy = ((float)_LSM6DS3_data->y_rate * M_PI_F / 180.0f) / 

1000.0f; 

    float wz = ((float)_LSM6DS3_data->z_rate * M_PI_F / 180.0f) / 

1000.0f; 

     

    float qw = orientation->current_quaternion.w; 

    float qx = orientation->current_quaternion.x; 

    float qy = orientation->current_quaternion.y; 

    float qz = orientation->current_quaternion.z; 

 

    // Calculate the derivative of the quaternion 

    orientation->current_rate_quaternion.w = 0.5f * (-wx * qx - wy * qy 

- wz * qz); 

    orientation->current_rate_quaternion.x = 0.5f * ( wx * qw + wz * qy 

- wy * qz); 

    orientation->current_rate_quaternion.y = 0.5f * ( wy * qw - wz * qx 

+ wx * qz);  

    orientation->current_rate_quaternion.z = 0.5f * ( wz * qw + wy * qx 

- wx * qy); 
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    // Update quaternion using the derivative 

    orientation->current_quaternion.w += orientation-

>current_rate_quaternion.w * (float)dt * 1e-6f; 

    orientation->current_quaternion.x += orientation-

>current_rate_quaternion.x * (float)dt * 1e-6f; 

    orientation->current_quaternion.y += orientation-

>current_rate_quaternion.y * (float)dt * 1e-6f; 

    orientation->current_quaternion.z += orientation-

>current_rate_quaternion.z * (float)dt * 1e-6f; 

 

    float accel_vector[4]; 

    if(OrientationAccelerationVector(_LSM6DS3_data, &accel_vector) && 

pad){ //try to get an acceleration vector to use as starting angle 

        float pitch_angle_accel = 

atan(accel_vector[1]/sqrt((accel_vector[0]*accel_vector[0])+(accel_vect

or[2]*accel_vector[2]))); 

        float yaw_angle_accel = 

atan(accel_vector[0]/sqrt((accel_vector[1]*accel_vector[1])+(accel_vect

or[2]*accel_vector[2]))); 

        // Calculate initial quaternion components based on the 

estimated roll and pitch angles 

        float cy = cos(pitch_angle_accel * 0.5f); 

        float sy = sin(pitch_angle_accel * 0.5f); 

        float cp = cos(yaw_angle_accel * 0.5f); 

        float sp = sin(yaw_angle_accel * 0.5f); 

        orientation->current_quaternion.w = 0.9f * orientation-

>current_quaternion.w + 0.1f * cp * cy; 

        orientation->current_quaternion.x = 0.9f * orientation-

>current_quaternion.x + 0.1f * sy * sp; 

        orientation->current_quaternion.y = 0.9f * orientation-

>current_quaternion.y + 0.1f * cp * sy; 

        orientation->current_quaternion.z = 0.9f * orientation-

>current_quaternion.z + 0.1f * sp * cy; 

    } 

 

    // Normalise quaternions 

    float norm = sqrtf(orientation->current_quaternion.w * orientation-

>current_quaternion.w + 

                       orientation->current_quaternion.x * orientation-

>current_quaternion.x + 

                       orientation->current_quaternion.y * orientation-

>current_quaternion.y + 

                       orientation->current_quaternion.z * orientation-

>current_quaternion.z); 

 

    // Apply normalisation 

    orientation->current_quaternion.w /= norm; 
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    orientation->current_quaternion.x /= norm; 

    orientation->current_quaternion.y /= norm; 

    orientation->current_quaternion.z /= norm; 

 

    // Convert quaternion to euler angles 

    orientation->previous_euler = orientation->current_euler; 

    orientation_quaternion_to_euler(&orientation->current_quaternion, 

&orientation->current_euler); 

     

    // Calculate the derivative of the euler angles 

    if ((orientation->current_euler.roll < (-(M_PI_F) + 0.6f)) && 

orientation->previous_euler.roll > (M_PI_F - 0.6f)) { 

        orientation->current_rate_euler.roll = (orientation-

>current_euler.roll + 2 * M_PI_F - orientation->previous_euler.roll) / 

((float)dt * 1e-6f); 

    } else { 

        orientation->current_rate_euler.roll = (orientation-

>current_euler.roll - orientation->previous_euler.roll) / ((float)dt * 

1e-6f); 

    } 

 

    orientation->current_rate_euler.pitch = (orientation-

>current_euler.pitch - orientation->previous_euler.pitch) / ((float)dt* 

1e-6f); 

    orientation->current_rate_euler.yaw = (orientation-

>current_euler.yaw - orientation->previous_euler.yaw) / ((float)dt * 

1e-6f); 

} 

 

bool OrientationAccelerationVector(LSM6DS3_data* _LSM6DS3_data, float 

vector[]){ 

    //convert from milli g to g 

    vector[0] = _LSM6DS3_data->x_accel/1000.0; 

    vector[1] = _LSM6DS3_data->y_accel/1000.0; 

    vector[2] = _LSM6DS3_data->z_accel/1000.0; 

 

    //check magnitude (in g) 

    float magnitude = sqrtf(vector[0]*vector[0] + vector[1]*vector[1] + 

vector[2]*vector[2]); 

     

    //normalise the vector 

    vector[0] /= magnitude; 

    vector[1] /= magnitude; 

    vector[2] /= magnitude; 

    vector[3] = magnitude; 

 

    if (magnitude < 0.9 || magnitude > 1.1){   //if not close to 1G 

        return false; 
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    } 

    return true; 

} 

 

void OrientationAccelerationQuaternion(orientation_data* _orientation, 

float accel_vector[], Quaternion* correction){ 

    Quaternion q_est = _orientation->current_quaternion; 

     

    // Estimate gravity direction in the world frame using current 

orientation estimate 

    float gw_x = 2 * (q_est.x * q_est.z - q_est.w * q_est.y); 

    float gw_y = 2 * (q_est.w * q_est.x + q_est.y * q_est.z); 

    float gw_z = q_est.w * q_est.w - q_est.x * q_est.x - q_est.y * 

q_est.y + q_est.z * q_est.z; 

 

    // Calculate error between estimated gravity direction and 

accelerometer readings 

    float error_x = 2 * (accel_vector[0] * gw_x + accel_vector[1] * 

gw_y + accel_vector[2] * gw_z); 

    float error_y = 2 * ((accel_vector[1] * gw_z - accel_vector[2] * 

gw_y)); 

    float error_z = 2 * ((accel_vector[2] * gw_x - accel_vector[0] * 

gw_z)); 

 

    // Compute feedback correction quaternion 

    float alpha = 0.02f; // Correction gain 

    correction->w = 1.0f; 

    correction->x = alpha * error_x; 

    correction->y = alpha * error_y; 

    correction->z = alpha * error_z; 

} 

Figure C.2 Source code for orientation_utils.c 
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The header file LQR_controller_driver.h outlines the interface and structure for 

implementing an LQR controller. This file declares the LQR_controller struct, which 

contains arrays for handling different gain sets based on the rocket's velocity and 

orientation state. 

/* 

  Leeds University Rocketry Organisation - LURA 

  Author Name: Alexandra Posta 

  Description: Include LQR Controller header file 

*/ 

#ifndef LQR_CONTROLLER_DRIVER_H 

#define LQR_CONTROLLER_DRIVER_H 

 

#include "orientation_utils.h" 

 

#define STATE_SPACE_DIM     6       // Euler 3xangle 3xrates 

#define NUM_GAINS           50 

#define NUM_SERVOS          4 

#define MAX_VELOCITY        120     // ms-1 

#define MIN_VELOCITY        30      // ms-1 

#define CANANDS_THRESHOLD   1500    // milidegree*1000 

 

typedef struct LQR_controller { 

    float* current_gain; 

    float current_gain_index; 

    float gain[NUM_GAINS * STATE_SPACE_DIM * NUM_SERVOS]; 

    float available_gains[NUM_GAINS * NUM_SERVOS * STATE_SPACE_DIM]; 

    float avg_gains[NUM_GAINS][NUM_SERVOS][STATE_SPACE_DIM]; 

    float zero_gains[NUM_SERVOS * STATE_SPACE_DIM]; 

} LQR_controller; 

 

/** 

  @brief Initialise the LQR controller 

  @param lqr LQR controller structure 

*/ 

void LQR_init(LQR_controller* lqr); 

 

/** 

  @brief Update the gains of the LQR controller 

  @param lqr LQR controller structure 

  @param velocity Current velocity of the rocket in m/s 

  @note the gains are set to zero if the velocity is below or above a 

threshold 

*/ 

void LQR_update_gain(LQR_controller* lqr, int velocity); 

 

/** 

  @brief Perform the LQR control 
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  @param lqr LQR controller structure 

  @param orientation Current orientation data 

  @param servo_defs Servo deflections angles 

*/ 

void LQR_perform_control(LQR_controller* lqr, orientation_data 

orientation, ServoDeflections* servo_defs); 

 

#endif /* LQR_CONTROLLER_DRIVER_H */ 

Figure C.3 Source code for lqr_controller.h 
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The source file lqr_controller.c LQR controller designed for managing rocket 

orientation and stability. It includes several functions: LQR_init initialises the controller 

by setting up initial gain values across arrays. The LQR_update_gain function 

dynamically adjusts the controller’s gains based on the rocket's velocity, applying zero 

gains if the velocity falls outside predefined safe operational ranges, thus maintaining 

control stability. Additionally, LQR_perform_control calculates necessary servo 

deflections based on current orientation and selected gains, incorporating safety 

thresholds to prevent exceeding mechanical limits.  

/* 

  Leeds University Rocketry Organisation - LURA 

  Author Name: Alexandra Posta 

  Description: Include LQR Controller source file 

*/ 

 

#include "lqr_controller.h"  

 

int _ravel_index_2d(int i, int j) 

{ 

    return i * STATE_SPACE_DIM + j; 

} 

 

int _ravel_index_3d(int i, int j, int k) { 

    return i * STATE_SPACE_DIM * NUM_SERVOS + j * STATE_SPACE_DIM + k; 

} 

 

void LQR_init(LQR_controller* lqr) { 

    // Set the zero gain array to zero 

    for (uint8_t i = 0; i < sizeof(lqr->zero_gains); i++) { 

        lqr->zero_gains[i] = 0; 

    } 

 

    // Initialise the current gain and index to zero 

    lqr->current_gain = &lqr->zero_gains[0]; 

    lqr->current_gain_index = 0.0f; 

 

    // Initialise average gains 

    double _avg_gains[NUM_GAINS][NUM_SERVOS][STATE_SPACE_DIM] = { 

        { 

            {5.9761e-05, -0.37796, -1.1106e-15, 0.26723, -0.38847, -

2.2002e-16}, 

            {5.9761e-05, 0.37796, 1.1899e-15, 0.26723, 0.38847, 

2.4892e-16}, 

            {5.9761e-05, 1.3538e-15, -0.37796, 0.26723, 6.8727e-16, -

0.38847}, 
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            {5.9761e-05, -1.1147e-15, 0.37796, 0.26723, -5.3388e-16, 

0.38847}, 

        }, 

        { 

            {5.9761e-05, -0.37796, -1.1945e-15, 0.26723, -0.3698, -

6.5912e-16}, 

            {5.9761e-05, 0.37796, 1.1945e-15, 0.26723, 0.3698, 8.5519e-

16}, 

            {5.9761e-05, 1.1922e-15, -0.37796, 0.26723, -5.9471e-17, -

0.3698}, 

            {5.9761e-05, -9.2426e-16, 0.37796, 0.26723, 4.3445e-16, 

0.3698}, 

        }, 

        { 

            {5.9761e-05, -0.37796, -2.541e-16, 0.26723, -0.35334, 

3.2436e-16}, 

            {5.9761e-05, 0.37796, 1.0805e-16, 0.26723, 0.35334, -

3.8215e-16}, 

            {5.9761e-05, 5.845e-16, -0.37796, 0.26723, 4.866e-16, -

0.35334}, 

            {5.9761e-05, -7.2657e-16, 0.37796, 0.26723, -5.5427e-16, 

0.35334}, 

        }, 

        //    REST OF THE CONTROLLER GAINS ARE NOT INCLUDED TO AID 

READABILITY      

    }; 

 

    // Include available gains 

    for (int i = 0; i < NUM_GAINS; i++) { 

        for (int row = 0; row < NUM_SERVOS; row++) { 

            for (int col = 0; col < STATE_SPACE_DIM; col++) { 

                lqr->avg_gains[i][row][col] = 

(float)_avg_gains[i][row][col]; 

                lqr->available_gains[_ravel_index_3d(i, row, col)] = 

(float)_avg_gains[i][row][col]; 

            } 

        } 

    } 

    // Set the current gain 

    lqr->current_gain = &lqr->available_gains[0]; 

} 

 

void LQR_update_gain(LQR_controller* lqr, int velocity) { 

    // Update gains based on speed 

    if (velocity < MIN_VELOCITY) {  // Stop controller if speed to high 

or low 

        lqr->current_gain = &lqr->zero_gains[0]; 

    } else if (velocity > MAX_VELOCITY) { 
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        lqr->current_gain_index = 49; 

        lqr->current_gain = &lqr-

>available_gains[_ravel_index_3d((int)lqr->current_gain_index, 0, 0)]; 

    } else { 

        lqr->current_gain_index = ((float)NUM_GAINS - 1) * 

(float)(velocity - MIN_VELOCITY) / (float)(MAX_VELOCITY - 

MIN_VELOCITY); 

        lqr->current_gain = &lqr-

>available_gains[_ravel_index_3d((int)lqr->current_gain_index, 0, 0)]; 

    } 

} 

 

void LQR_perform_control(LQR_controller* lqr, orientation_data 

orientation, ServoDeflections* servo_defs) { 

    // Extract Euler angles and Rates 

    float _orientation[STATE_SPACE_DIM] = 

{orientation.current_euler.roll,  

 orientation.current_euler.pitch,  

 orientation.current_euler.yaw,  

 orientation.current_rate_euler.roll,  

 orientation.current_rate_euler.pitch,  

 orientation.current_rate_euler.yaw}; 

     

    // Perform control 

    servo_defs->servo_deflection_1 = 0; 

    servo_defs->servo_deflection_2 = 0; 

    servo_defs->servo_deflection_3 = 0; 

    servo_defs->servo_deflection_4 = 0; 

 

    for (int col = 0; col < STATE_SPACE_DIM; col++) { 

        servo_defs->servo_deflection_1 += lqr-

>current_gain[_ravel_index_2d(1, col)] * _orientation[col] * 100.0f * 

180.0f / M_PI_F; //store in degrees * 100 

        servo_defs->servo_deflection_2 += lqr-

>current_gain[_ravel_index_2d(2, col)] * _orientation[col] * 100.0f * 

180.0f / M_PI_F; 

        servo_defs->servo_deflection_3 += lqr-

>current_gain[_ravel_index_2d(3, col)] * _orientation[col] * 100.0f * 

180.0f / M_PI_F; 

        servo_defs->servo_deflection_4 += lqr-

>current_gain[_ravel_index_2d(4, col)] * _orientation[col] * 100.0f * 

180.0f / M_PI_F; 

    } 

 

    if (servo_defs->servo_deflection_1 > CANANDS_THRESHOLD) { 

        servo_defs->servo_deflection_1 = CANANDS_THRESHOLD; 

    } else if (servo_defs->servo_deflection_1 < -CANANDS_THRESHOLD) { 

        servo_defs->servo_deflection_1 = -CANANDS_THRESHOLD; 
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    } 

 

    if (servo_defs->servo_deflection_2 > CANANDS_THRESHOLD) { 

        servo_defs->servo_deflection_2 = CANANDS_THRESHOLD; 

    } else if (servo_defs->servo_deflection_2 < -CANANDS_THRESHOLD) { 

        servo_defs->servo_deflection_2 = -CANANDS_THRESHOLD; 

    } 

 

    if (servo_defs->servo_deflection_3 > CANANDS_THRESHOLD) { 

        servo_defs->servo_deflection_3 = CANANDS_THRESHOLD; 

    } else if (servo_defs->servo_deflection_3 < -CANANDS_THRESHOLD) { 

        servo_defs->servo_deflection_3 = -CANANDS_THRESHOLD; 

    } 

 

    if (servo_defs->servo_deflection_4 > CANANDS_THRESHOLD) { 

        servo_defs->servo_deflection_4 = CANANDS_THRESHOLD; 

    } else if (servo_defs->servo_deflection_4 < -CANANDS_THRESHOLD) { 

        servo_defs->servo_deflection_4 = -CANANDS_THRESHOLD; 

    } 

} 

Figure C.4 Source code for orientation_utils.c 
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Appendix D – Firmware Setup 

The startup file, displayed below, prepares the environment for the execution of a 

firmware application. It is executed immediately after the system is powered up or 

reset. 

 

/* 

  Leeds University Rocketry Organisation - LURA 

  Author Name: Alexandra Posta 

  Description: Startup file for the firmware; suitable for STM32L4R5 

*/ 

 

// Startup code 

__attribute__((naked, noreturn)) void _reset(void) { 

  // Initialise memory 

  extern long _sbss, _ebss, _sdata, _edata, _sidata; 

  for (long *src = &_sbss; src < &_ebss; src++) *src = 0; 

  for (long *src = &_sdata, *dst = &_sidata; src < &_edata;) *src++ = 

*dst++; 

 

  // Call main() 

  extern void main(void); 

  main(); 

  for (;;) (void) 0;  // Infinite loop 

} 

 

extern void SysTick_Handler(void);  // Defined in main.c 

extern void _estack(void);          // Defined in link.ld 

 

// 16 standard and 95 STM32-specific handlers 

__attribute__((section(".vectors"))) void (*tab[16 + 95])(void) = { 

    _estack, _reset, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

SysTick_Handler}; 

 
Figure D.1 Startup file 
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The code snippet below provides a set of system call implementations for newlib, a C 

standard library. These system calls handle operations like memory management with 

_sbrk, file manipulation routines such as _open, _close, and _unlink, and basic process 

controls including _exit and _kill. For instance, _write is redirected to send data serially 

over USART1, showing an adaptation to the embedded context where standard 

input/output interfaces might not be directly available. 

 

/* 

  Leeds University Rocketry Organisation - LURA 

  Author Name: Alexandra Posta 

  Description: System calls for newlib 

*/ 

 

#include "mcu.h" 

#include <inttypes.h> 

#include <stdbool.h> 

#include <stdlib.h> 

 

int _fstat(int fd, struct stat *st) { 

  if (fd < 0) return -1; 

  st->st_mode = S_IFCHR; 

  return 0; 

} 

 

void *_sbrk(int incr) { 

  extern char _end; 

  static unsigned char *heap = NULL; 

  unsigned char *prev_heap; 

  if (heap == NULL) heap = (unsigned char *) &_end; 

  prev_heap = heap; 

  heap += incr; 

  return prev_heap; 

} 

 

int _open(const char *path) { 

  (void) path; 

  return -1; 

} 

 

int _close(int fd) { 

  (void) fd; 

  return -1; 

} 

 

int _isatty(int fd) { 

  (void) fd; 



38 

 

  return 1; 

} 

 

void _exit(int status) { 

  (void) status; 

  for (;;) asm volatile("BKPT #0"); 

} 

 

void _kill(int pid, int sig) { 

  (void) pid, (void) sig; 

} 

 

int _getpid(void) { 

  return -1; 

} 

 

int _read(int fd, char *ptr, int len) { 

  (void) fd, (void) ptr, (void) len; 

  return -1; 

} 

 

int _link(const char *a, const char *b) { 

  (void) a, (void) b; 

  return -1; 

} 

 

int _unlink(const char *a) { 

  (void) a; 

  return -1; 

} 

 

int _stat(const char *path, struct stat *st) { 

  (void) path, (void) st; 

  return -1; 

} 

 

int mkdir(const char *path, mode_t mode) { 

  (void) path, (void) mode; 

  return -1; 

} 

 

int _write(int fd, char *data, int len) { 

  (void) fd, (void) data, (void) len; 

  if (fd == 1) uart_write_buf(USART1, data, (size_t) len); 

  return -1;  

} 
 

Figure D.2 System Calls 
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A linker script dictates how the compiler should place the program's sections into the 

memory of the target device. 

 

/* 

  Leeds University Rocketry Organisation - LURA 

  Author Name: Alexandra Posta 

  Description: linker script for the HFC firmware; suitable for STM32 

*/ 

 

ENTRY(_reset); 

MEMORY { 

  flash(rx)  : ORIGIN = 0x08000000, LENGTH = 2048k 

  sram(rwx) : ORIGIN = 0x20000000, LENGTH = 192k  /* remaining 64k in a 

separate address space */ 

} 

_estack     = ORIGIN(sram) + LENGTH(sram);    /* stack points to end of 

SRAM */ 

 

SECTIONS { 

  .vectors  : { KEEP(*(.vectors)) }   > flash 

  .text     : { *(.text*) }           > flash 

  .rodata   : { *(.rodata*) }         > flash 

 

  .data : { 

    _sdata = .;   /* .data section start */ 

    *(.first_data) 

    *(.data SORT(.data.*)) 

    _edata = .;  /* .data section end */ 

  } > sram AT > flash 

  _sidata = LOADADDR(.data); 

 

  .bss : { 

    _sbss = .;              /* .bss section start */ 

    *(.bss SORT(.bss.*) COMMON) 

    _ebss = .;              /* .bss section end */ 

  } > sram 

 

  . = ALIGN(8); 

  _end = .;     /* for cmsis_gcc.h  */ 

} 

 
 

Figure D.3 Linker File 
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A Makefile is a configuration file used with the make utility, a tool that automates the 

building of executable programs from source code. By defining specific "targets" and 

the rules to build these targets, a Makefile is used to automate the process of uploading 

or "flashing" the compiled firmware onto a specific hardware device, such as a STM32. 

The target executes a series of commands that transfer the binary file to the device’s 

memory, enabling it to run the new code directly.  

CFLAGS  ?=  -W -Wall -Wextra -Wundef -Wshadow -Wdouble-promotion \ 

            -Wformat-truncation -fno-common -Wconversion -Wno-unknown-

pragmas \ 

            -g3 -Os -ffunction-sections -fdata-sections -I. -Iinclude \ 

            -mcpu=cortex-m4 -mthumb -mfloat-abi=hard -mfpu=fpv4-sp-d16 

$(EXTRA_CFLAGS) \ 

            -lm 

LDFLAGS ?= -Tlink.ld -nostartfiles -nostdlib --specs nano.specs -lc -

lgcc -Wl,--gc-sections -Wl,-Map=$@.map 

SOURCES = main.c startup.c syscalls.c STM32_init.c 

drivers/MS5611_driver.c drivers/BME280_driver.c  \ 

          drivers/ADXL375_driver.c drivers/LSM6DS3_driver.c 

test_routines.c data_buffer.c filters.c \ 

          orientation_utils.c lqr_controller.c drivers/SERVO_driver.c 

kalman_filter.c 

 

build: firmware.bin 

 

firmware.elf: $(SOURCES) 

    arm-none-eabi-gcc $(SOURCES) $(CFLAGS) $(LDFLAGS) -o $@ 

 

firmware.bin: firmware.elf 

    arm-none-eabi-objcopy -O binary $< $@ 

 

flash: firmware.bin 

    st-flash --reset write $< 0x8000000 

 

dfu: firmware.bin 

    STM32_Programmer_CLI -c port=usb1 --download firmware.bin 0x8000000 

 

clean: 

    del -rf firmware.* 

 

debug: 

    openocd -f ./openocd/scripts/board/st_nucleo_l4.cfg 

 
 

Figure D.4 Makefile 
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Appendix E – Database structure 

 
 

Figure E. 1 Database structure 
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Appendix F – MATLAB Input Format Equations 

Equation (1) estimates the altitude based on the atmospheric pressure measured at a 

given height compared to the sea level pressure. 0.19 approximates the change in 

pressure with altitude under a standard atmosphere. 

ℎ = 44330 ∗ (1 −  (
𝑝

1013.25
)

0.19

) (1) 

Equation (2) updates the vertical velocity of the rocket by adding the change in velocity 

due to acceleration over a small time interval, Δ𝑡. The constant 0.00980655 converts 

acceleration from the standard gravitational unit 𝑔 to 𝑚/𝑠2, aligning with the standard 

unit of velocity in meters per second. 

𝑣 = 𝑣 + 𝑎 ∗ 0.00980655 ∗ ∆𝑡 (2) 

Equation (3) calculates the mass decrease of a rocket over time as it burns propellant. 

The initial and propellant mass are divided by the burnt time, 𝑡. 

𝑚 = 𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙 −  
𝑚𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡

𝑡
  (3) 

The longitudinal moment of inertia, 𝐼,  of the rocket can be calculated using the 

Equation (4), where 𝐼𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡  is the moment of inertia of the remaining propellant and 

𝐼𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 is the moment of inertia of the structural mass (excluding propellant). 

𝐼𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 =  𝐼𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 + 𝐼𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 (4) 

The moment of inertia for cylindrical bodies, typical rocket shapes, about their 

longitudinal axis can be calculated using Equation (5). In here, 𝑚 is the mass of the 

cylinder (propellant or structure), 𝑟 is the radius of the cylinder and ℎ is the height. 

𝐼𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 =  
1

12
 ∗ 𝑚 ∗ (3 ∗ 𝑟2 + ℎ2) (5) 

Equation (6) calculates the rotational moment of inertia for a body, assuming a 

simplified cylindrical distribution of mass. The radius, 𝑟, indicates how far the mass, 𝑚, 

is spread from the rotational axis, and the 0.5 is a coefficient that changes based on 

the geometry of the body. 

 𝐼𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 =  0.5 ∗  𝑚 ∗  𝑟 2 (6) 

The centre of gravity (CG) for the rocket is calculated based on the amount of 

propellant consumed, with an assumption that the CG shift is linearly dependent on 

the propellant mass consumed. The change in CG location is given by the Equation 
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(7), where 𝐶𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the initial centre of gravity location and ∆𝐶𝐺 is the shift in the 

centre of gravity due to propellant consumption. 

𝐶𝐺𝑛𝑒𝑤 = 𝐶𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − ∆𝐶𝐺 (7) 

The shift in the centre of gravity (∆𝐶𝐺) can be calculated as Equation (8): 

∆𝐶𝐺 =
𝑚𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙
∗

𝐶𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙

2
(8) 

The Mach number is the ratio of the object's velocity to the speed of sound in the 

surrounding medium. 𝛾 represents the heat capacity ratio of the air, 𝑅 is the specific 

gas constant for air, and 𝑇 is the ambient temperature. This equation is used to 

determine how supersonic the object's movement is relative to the speed of sound at 

a given temperature and atmospheric condition. 

𝑚𝑎𝑐ℎ =
𝑣

√γ ∗ 𝑅 ∗ 𝑇
 (9) 
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Appendix G – CPP 
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Appendix H  – Meeting logs 
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