
i

MECH5080M Team Project – Individual
Report
End-to-End Data Pipeline Architecture to
improve a Sounding Rocket Stability
Control
Author: Alexandra Posta 201318973
Supervisor: Dr Jongrae Kim
Industrial Mentor: Theo Gwynn
Examiner: Dr Jongrae Kim, Professor
Robert Kay
Date: 30/04/2024

End-to-End Data Pipeline to improve a Vertical
Orientation System for a Sounding Rocket

ii

SCHOOL OF MECHANICAL ENGINEERING

MECH5840

TITLE OF PROJECT

PRESENTED BY

OBJECTIVES OF PROJECT

The project's aim is to aid the VOS of sounding rockets through the development and

integration of a software-firmware system. This system incorporates the active control

of canards and advanced data management tools to support continuous improvement.

IF THE PROJECT IS INDUSTRIALLY LINKED TICK THIS BOX
AND PROVIDE DETAILS BELOW

THIS PROJECT REPORT PRESENTS OUR OWN WORK AND DOES NOT
CONTAIN ANY UNACKNOWLEDGED WORK FROM ANY OTHER SOURCES.

SIGNED DATE 30/04/2024

MECH5080M TEAM PROJECT 60 credits

End-to-End Data Pipeline to improve a Vertical Orientation System for a

Sounding Rocket

Alexandra Posta

COMPANY NAME AND ADDRESS:

Airbus Defence and Space

Gunnels Wood Rd, Stevenage SG1 2AS

INDUSTRIAL MENTOR:

Theo Gwynn

iii

Contents

List of Figures .. v

Nomenclature .. vi

Abstract .. vii

Chapter 1. Introduction .. 1

1.1 Introduction ... 1

1.2 Individual Project Aim .. 1

1.3 Individual Project Objectives ... 1

Chapter 2. Background and Literature Review .. 2

2.1 Background ... 2

2.2 Literature Review .. 2

Chapter 3. Firmware Development .. 4

3.1 Introduction ... 4

3.2 Firmware Setup ... 4

3.3 Flashing Methodology ... 4

3.4 Firmware Development ... 5

3.5 Firmware Testing... 8

Chapter 4. Data Processing and Storage .. 9

4.1 Introduction ... 9

4.2 Data Storage Comparison ... 9

4.3 Data Storage Architecture ... 9

Chapter 5. Data visualisation ... 10

5.1 Introduction ... 10

5.2 Backend Framework Selection .. 10

5.3 Framework Development .. 10

5.4 LURA Dash Features .. 11

Chapter 6. Pipeline Integration .. 13

6.1 Introduction ... 13

6.2 Pipeline Discussion and Results ... 13

6.2.1 Pipeline Throughput .. 13

6.2.2 Storage Capabilities .. 14

6.2.3 Cloud Hosting Implications .. 14

6.2.4 Adaptability .. 14

Chapter 7. Conclusion and Future Work .. 15

iv

7.1 Achievements .. 15

7.2 Conclusion ... 15

7.3 Future Work.. 15

References .. 16

Appendix A – Firmware Flowchart ... 19

Appendix B – Dashboard GitHub README file ... 20

Appendix C – Controller Transition from MATLAB to C 22

Appendix D – Firmware Setup ... 36

Appendix E – Database structure .. 41

Appendix F – MATLAB Input Format Equations .. 42

Appendix G – CPP .. 44

Appendix H – Meeting logs ... 56

v

List of Figures

Figure 2.1 Data Pipeline Overview .. 2

Figure 3.1 Flashing procedure for the custom Aptos PCB via a Nucleo-144 ... 5

Figure 3.2 Simplified Firmware Flow Diagram (extensive diagram in Appendix

A) ... 6

Figure 5.1 Main LURA Dash tab, data is displayed from the active controlled

test flight .. 12

Figure 5.2 Pages on LURA Dash: the import of a new flight in the database (left)

 .. 12

Figure 6.1 System Integration.. 13

Figure A.1 Detailed Firmware Flow Diagram ... 19

Figure C.1 Source code for orientation_utils.h .. 23

Figure C.2 Source code for orientation_utils.c ... 29

Figure C.3 Source code for lqr_controller.h ... 31

Figure C.4 Source code for orientation_utils.c ... 35

Figure D.1 Startup file .. 36

Figure D.2 System Calls .. 38

Figure D.3 Linker File .. 39

Figure D.4 Makefile ... 40

Figure E.1 Database structure ... 41

vi

Nomenclature

API Application Programming Interface

COTS Commercial-Off-The-Shelf

ELT Extract Load Transform

GPIO General Purpose Input/Output

HIL Hardware-in-the-loop

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

LQR Linear–quadratic regulator

LURA Leeds University Rocketry Association

ORM Object-Relational Mapping

PCB Printed Circuit Board

REST Representational State Transfer

SQL Structured Query Language

SWD Serial Wire Debug

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver/Transmitter

UK United Kingdom

UKRA United Kingdom Rocketry Association

USB Universal serial bus

VOS Vertical Orientation Systems

vii

Abstract

This thesis presents the development of a data pipeline designed to aid the active

vertical stabilisation system of a sounding rocket. The primary objective was to create

a robust architecture that connects firmware and software components necessary for

flight control operations of Aptos, a module that contains a secondary set of fins

actuated individually to stabilise trajectory.

The project involved the development of a flight firmware in bare metal C, setting up a

development environment that includes the main loop routine, helper functions, and a

controller initially modelled in MATLAB and Simulink. Furthermore, methods for storing

and visualising flight data were established and tested to support the pipeline. The

system's performance was ultimately tested during a rocket launch campaign, where

hardware was mounted to a sounding rocket and operated under active control. Data

was successfully collected during flight, ingested in a centralised database storage unit

and visualise for further controller gain tuning.

The projects confirms that a well-integrated data pipeline is beneficial for the

advancement and refinement of aerospace technologies, particularly in the

development of flight controllers for sounding rockets.

1

Chapter 1. Introduction

1.1 Introduction

Sounding rockets serve as pivotal instruments for atmospheric research and suborbital

experiments. The flight trajectory of a rocket can be affected by external factors such

as winds which lead to uncontrolled dispersion and lower apogees [1]. To minimise the

effects of external factors and improve the flight trajectory, active vertical controllers

can be used. This report presents the development of an end-to-end data pipeline

meant to facilitate the active stabilisation of rockets. It focuses on the application of

Vertical Orientation Systems (VOS) which computes the desired orientation of the

rocket by controlling a secondary set of fins known as canards [2], [3], [4].

The end-to-end data pipeline is enabled through various coding platforms integration.

It merges low-level firmware, which manages the actuation of the canards, with high-

level software algorithms that process data streams, analyse flight dynamics, and

execute stabilisation strategies. The following chapters outline the pipeline

components: firmware development, centralised database, and data visualisation.

Chapter 2 introduces the concepts, Chapters 3 to 5 detail each component, and

Chapter 6 discusses system integration, followed by conclusions and future work.

The report presents a system where firmware and software are integrated elements of

a single, robust architecture. This perspective is beneficial for the successful

deployment and improvement of the VOS controller. Such an approach furthers the

field of aerospace engineering and proposes a unified system that is not widely

available or standardised in the industry.

1.2 Individual Project Aim

The project's aim is to aid the VOS of sounding rockets through the development and

integration of a software-firmware system. This system incorporates the active control

of canards and advanced data management tools to support continuous improvement.

1.3 Individual Project Objectives

• To complete the firmware development and convert the high level MATLAB

Simulink controller into bare metal C code.

• To develop a visualisation and storage tool that aids controller refinement by

allowing users to make informed decisions after analysing flight data.

• To integrate the previously defined subsystems into a coherent data pipeline that

streamlines the development of the VOS flight controller.

2

Chapter 2. Background and Literature Review

2.1 Background

The active control module, namely Aptos, utilises four independently actuated servos

and fins (canards) situated in the midsection of the sounding rocket. The rocket is

vertically stabilised by the fins’ deflection’s that generate steering moments. Now in its

second year of development, the focus has shifted towards an overhaul of the

firmware, software, and hardware required to operate the controller. This year's work

builds upon the previous year's foundational work [5], [6], during which two launches

were conducted without the control activated. This happened due to insufficient testing

and hardware reliability concerns. As a result, the work presented in this report aims

to streamline the development process of the controller and enhance its safety.

The concept of data pipeline, in computing, refers to a structured series of nodes,

where the output of one node is the input of the next [7]. Data pipelines are designed

to improve the flow of data from the source to the destination by automating the

process and thereby reducing the requirement for manual involvement. Data pipelines

can come in two different forms: Extract-Load-Transform (ELT) or Extract-Transform-

Load (ETL) [8]. In this context, as illustrated in Figure 2.1, an ELT system was

developed to use the computational resources available on the ground rather than

processing data during flight. Data is extracted from the onboard computer post-flight,

including atmospheric readings and controller metrics, which are then captured and

stored locally on a NOT-AND (NAND) Flash memory unit. After the extraction step,

data is loaded on a centralised database from where it can be visualised and

postprocessed. To improve the controller further, data can be transformed in a format

that is compatible with the input to the MATLAB/Simulink controller simulations. By

doing this, the gain tuning can be performed using real-flight data.

Figure 2.1 Data Pipeline Overview

2.2 Literature Review

In rocketry applications, there is a variety of technologies employed for data pipelines

across teams and projects. An overview was conducted to analyse how individual

teams have selected methodologies and components in their data architectures. This

analysis creates a broader understanding of the existing solutions within the field of

aerospace engineering, specifically low cost sounding rocketry.

3

In sounding rocket projects, Arduinos and Teensy are utilised frequently as the flight

computer processing unit. A flight computer processing unit is a device that controls

the aerospace vehicles, processing data from onboard sensors. These pre-made

boards contain all of the circuitry needed for the processor unit and can be paired with

premade breakout sensor boards. The use of these systems has been identified in

various projects such as the Helen project [9] and the Gryphon I rocket launched by

the Leeds University Rocketry Association (LURA) [10]. These boards are favoured for

their ease of prototyping, although they often face limitations in flexibility due to

predefined libraries and have high costs. Additionally, many groups, such as Ohio’s

University Rocketry team [11], avoid the use of their own flight hardware and rely on

the readings from Commercial-Off-The-Shelf (COTS) flight computers such as the

Altus Metrum Series [12], restricting their capabilities further.

For more complex applications, other rocketry teams have adopted more powerful

microcontrollers such as the NXP chips, GD32 and ARM-based platforms like the

STM32, such as [13] and [14], which required more advanced C programming. These

alternatives provide greater flexibility at the cost of increased complexity. Despite the

complexity, a lower level understanding of the system helps with debugging. For

example, the launch vehicle TEXUS/MAXUS [15] integrated five different on-board

experiments that had a custom built data collection system.

In the context of data storage for sounding rocketry teams, there is no standardised

database system in place, nor are there centralised records of sounding rocket

launches at the United Kingdom (UK) national level. The UK Rocketry Association

(UKRA) is recognised as the primary information source for rocketry in the UK.

Although there has been an initiative to establish a database for amateur rocketry

teams [16], the necessary infrastructure is yet to be implemented. The absence of a

unified system has shifted the focus of the review towards general purpose, lightweight

and intuitive database platforms. Database options are detailed in Section 4.2.

In terms of rocket flight visualisation, there seems to be no publicly available dashboard

technology specifically developed by university rocketry teams. However, individuals

and independent groups have developed dashboards by analysing flight data from

commercial aerospace companies such as SpaceX [17], [18]. These dashboards

contain widgets that display general information about the launch vehicle and some

telemetry information about the flight stages timings. Additionally, smaller groups have

released dashboards tailored for real-time testing of the sensors on flight hardware

[19]. These platforms enable users to connect physical boards directly to a device,

extract sensor information and display readings via the web interface dashboard.

4

Chapter 3. Firmware Development

3.1 Introduction

Firmware is specialised software that is embedded in the non-volatile memory of a

hardware device. The hardware platform used is a custom Printed Circuit Board (PCB)

that is controlled by a STM32L4R5ZI-P microcontroller (MCU). An STM32 refers to a

family of 32-bit MCUs integrated circuits by STMicroelectronics. The peripherals, any

external component connected to the MCU, and internals, any registers that are

directly inside of the processor unit, were set manually using custom C drivers and

setup files. The setup process is described in the subsequent sections and the

codebase is available publicly on GitHub [20].

C has emerged as the most appropriate programming language, as it is versatile,

performant and portable. A custom bare metal system was developed, where firmware

operates directly on hardware without an intermediate operating system (OS). This

setup allows for more control over hardware resources, which is ideal in real-time

applications, such as a flight computer that runs on an STM32 embedded platform.

3.2 Firmware Setup

The firmware was developed inside the Visual Studio Code Integrated Development

Environment (VS Code IDE), a tool that can support C code and direct interaction with

hardware for debugging purposes through the inspection of memory addresses.

In the context of bare metal development, a series of configurations are needed for the

compilation of the firmware on to the target MCU [21]. The high level steps include the

setup of memory and registers addresses, the configuration of the interrupt vector table

for error handling and the creation of startup code that initialises the memory stack.

Additionally, a linker script is required to define the memory layout of the application.

Internal configurations such as General Purpose Input/Output (GPIO), system ticks for

timekeeping or Universal Asynchronous Receiver/Transmitter (UART) for serial

communication are defined. Furthermore, to facilitate debugging and output, print

statements are redirected to UART. Appendix D should be checked for a more detailed

explanation of the firmware setup.

3.3 Flashing Methodology

The hardware setup involves powering the board either through a 7.4V battery or a

Universal Serial Bus (USB) connection. A Nucleo-144 board, which incorporates an

ST-LINK/V2 in-circuit debugger/programmer, is employed to upload the compiled code

5

(flashing). Flashing involves writing the compiled code to the non-volatile memory of

the MCU, which allows the program to be stored permanently, even when the device

is turned off or restarted. The connection between the flight computer and the Nucleo

board is established via a 4-pin Serial Wire Debug (SWD) header. Since the ST-Link

interface does not support output display from the MCU, an additional serial connection

is needed. The UART1 pins are exposed on the PCB and connected to a serial

interface linked to the computer via USB. Data output is monitored through a PuTTY

terminal session which facilitates the debugging of the programmed firmware. The

hardware setup can be visualised in Figure 3.1.

Figure 3.1 Flashing procedure for the custom Aptos PCB via a Nucleo-144

A procedure was put into place to flash code on the flight computer MCU. Firstly, the

development environment was configured as described in the Appendix B. Then, the

firmware was compiled into executable code by navigating to the code repository in a

terminal and running the make flash command.

3.4 Firmware Development

The firmware development involved a collaborative effort from various team members,

but the following sections cover the author’s main areas of focus. The development

cycle was completed through firmware implementation, debugging and testing.

6

A simplified version of the general firmware loop can be viewed in Figure 3.2. For a

detailed view, refer to Appendix A. The code configured the STM32 MCU and initialised

the communications with onboard sensors using Serial Peripheral Interface (SPI) and

UART communication. This included the initialisation of drivers for the barometer

sensor, accelerometer, Inertia Measurement Unit (IMU), and the NAND Flash memory.

Figure 3.2 Simplified Firmware Flow Diagram (extensive diagram in Appendix A)

The flight computer captured sensor readings at frequencies that varied according to

different flight phases, as listed above. During the ascend, the system recorded at a

high frequency of up to 1000 Hz to ensure a comprehensive capture of the rocket’s

performance under maximum dynamic stress and rapid environmental changes, which

are most pronounced during this phase. For the descent and landing phases, where

changes are more gradual, the recording frequency was reduced to 100 Hz, optimising

data storage without compromising the quality of the information gathered.

Data from sensors was stored in a circular buffer, designed to hold up to 50 readings,

which helped to reduce noise by calculating median values and applying sensor fusion

techniques for more accurate state determination. The custom-developed firmware

used the buffer to record data at the moment of take-off. In contrast, most COTS [12]

systems commence recording post take-off, thus missing several initial readings. The

system was designed to capture the early stages of flight.

Custom functions were implemented to detect lift-off through altitude offsets and

acceleration triggers, to calculate vertical velocity from pressure, and identify landing

by low gyroscope standard deviation and predefined ground pressure threshold levels.

The use of multiple sensor readings for a single flight stage transition ensured that the

system could respond appropriately to dynamic conditions throughout the flight.

The existing LQR (Linear-Quadratic Regulator) controller and servo mechanisms were

integrated to adjust the vehicle's flight controls based on processed sensor data. Data

from sensors and control outputs were compiled into a structured format (FrameArray),

timestamped, and logged into NAND flash storage for retrieval and analysis.

7

The control algorithm, originally developed in MATLAB and Simulink, was translated

into C and embedded onto the firmware. The LQR sourced from the previous year

controller [5] and firmware [6], were used as guidance. Further steps were taken to

improve the controller's execution speed, by removing unnecessary loops, replacing

memory draining variables with pass-by-reference pointers, unrolling loops to process

multiple values simultaneously. The primary sensor for the LQR, the gyroscope, was

initialized at various rates to determine the system's minimum operational frequency.

Through trial and error, it was found out that the rates would have a stable output above

100 Hz. Detailed explanations of the controller logic can be found in Appendix C.

Data from the IMU sensor, which includes a three-axis gyroscope and accelerometer,

determines the orientation of the launch vehicle. Raw gyroscope data, expressed as

Euler angles (roll, pitch, and yaw), risks gimbal lock—a condition causing loss of one

degree of freedom. To avoid the this, gyroscope data was converted into Quaternions,

represented as four scalar values: qw (the real part) and qx, qy, qz (the imaginary part),

[22]. The vehicle orientation was updated in quaternion format. The state is then

converted back into Euler angles as input into controller. This conversion is needed

because the controller is designed around Euler angles. Figure 3.3 was created to aid

the visualisation of the canards expected deflection when motion is applied.

To correctly determine servo deflections from the

controller, the gyroscope data must be mapped to

their corresponding gains. Due to an alignment

discrepancy between the IMU output and the

controller's expected input, an axis conversion was

implemented, as outlined in Figure 3.4. The

controller was configured for a left-hand

coordinate system, contrasting with the right-hand

coordinate data output from the IMU gyroscope.

Moreover, due to the vertical orientation of the

board, the roll and pitch axis were reverted.

Figure 3.4 Coordinate System before
correction (left) and after correction

(right)

Figure 3.3 Canard Expected Deflection during yaw (left), roll (centre) and pitch (right)

8

3.5 Firmware Testing

Each sensor custom driver functionality was evaluated through a unit testing

procedure, where individual drivers were isolated to retrieve data. For more advanced

drivers, such as those handling orientation, testing was conducted with a mobile phone

application named Sensor Logger, which calculates the phone's position using Euler

and Quaternions [23]. To validate the conversion process, the board was physically

attached to the mobile phone and moved along the roll, pitch, and yaw axes, as shown

in the Figure 3.5. The Quaternions calculated using the Aptos firmware closely follow

the readings from the mobile app, confirming the accuracy of the orientation.

Figure 3.5 Comparison between Sensor Logger Quaternions and flight computer Quaternions

The main loop firmware testing involved placing the flight computer inside a vacuum

chamber to simulate flight conditions. The chamber's air pressure was reduced to -

0.6bar at the highest pump rate to emulate the atmospheric conditions encountered

during flight. Despite the limited pump rates, the results confirmed that the barometer's

calculations were accurate to determine the transitions between flight stages.

The flight test for the Aptos module took place on April 14, 2024,

during which the system was successfully launched with active

control enabled. The board correctly transitioned through the flight

stages, and notable oscillations were observed, which were

attributed to the control’s corrective actions. However, the test

revealed a flaw in the NAND flash routine, as servo four data was

missing. This happened because the memory address of servo four

was overwritten, by mistake, by the bits used for data correction.

Additionally, while the servo outputs were intentionally limited to ±15

degrees for safety reasons, the data logged was the capped value

rather than the actual angle produced by the controller.
Figure 3.6 Aptos

Flight

9

Chapter 4. Data Processing and Storage

4.1 Introduction

The subsequent phase in the pipeline evolves the storage of the collected data. A

database serves as a structured platform for storing, retrieving, and managing data,

enabling access and manipulation of flight information. The aim is to create a

centralised flight record system that will serve as a long-term repository for flight data.

4.2 Data Storage Comparison

The database requirements focus on collection, storage, retrieval, accessibility, and

integration [24]. The database must accommodate numerical, text, and time data

types, all within a modular framework to facilitate future expansion. For data retrieval,

the system requires quick search capabilities, as it is meant to manage multiple

concurrent queries when flight data is requested by users. Various database platforms

were evaluated such as MySQL, PostgreSQL, which offers robust security [25],

MongoDB, which allows for flexible data structures, and InfluxDB, which specialises in

time series data [26]. MySQL stands out for its widespread adoption, high storage

capacity, and intuitive interface. The ease of setting up and managing MySQL, coupled

with its familiar relational database environment, swayed the decision in its favour.

4.3 Data Storage Architecture

A local MySQL instance named "aptosdb" was created, along with its structure,

designed to organise information into subject-based tables. The database operated on

a local system, meaning it stores and manages data on the device where it is installed.

Appendix E outlines the database structure, which mirrored the master structure used

in the firmware for managing data on the NAND Flash. In MySQL, a table is a

structured format to store data in rows and columns, where each column holds a type

and each row corresponds to a record. The database features three tables linked by a

one-to-many relationship, meaning a single record from one table (primary table,

"flight") can be associated with multiple records in the other tables ("flight_data" and

"control_command") via a unique key. The primary table, "flight", stored general

information. Meanwhile, "flight_data" included the sensor readings and

"control_command" recorded controller information, specifically servo deflection

angles. The two tables include timestamps and default values for all entries to avoid

errors with potential undefined raw entries. MySQL provides an interactive terminal

that was used to document and prepared the scripts needed in the following phase.

10

Chapter 5. Data visualisation

5.1 Introduction

A web-based application, the user-facing component of the system, was developed to

facilitate intuitive data visualisation from the databases. This tool promotes more

informed decision-makings and facilitates the identification of trends and anomalies

within the dataset.

For this component of the pipeline, a new web application was developed, called

“LURA Dash”. The following sections detail the backend and frontend components.

The backend is tasked with the application’s logic and data processing, while the

frontend focuses on user interaction and visual integration.

5.2 Backend Framework Selection

The following requirements were selected: simplicity, to accommodate members with

less web-based experience; flexibility, to keep the tool computationally lightweight

without heavy dependencies; and extensibility, to allow for future features such as user

authentication. A Python-based framework was selected to leverage its widespread

popularity and ease of integration with MySQL databases. The ideal framework should

have a solid foundation of user guides and resources to address common issues.

Flask, a Python based web framework, was chosen for its Representational State

Transfer (RESTful) request handling, built-in development server, and integrated

debugger that aids error correction [27]. Compared to alternative frameworks —

Django's complexity, CherryPy's inadequate documentation, and Bottle's limited

community [28] — Flask stands out as the most pragmatic choice. Its strong

community support and comprehensive documentation ensure a smooth development

process, making it an accessible and powerful tool for developers of all skill levels.

5.3 Framework Development

Flask served as the backbone of “LURA Dash”. It facilitated the creation and

management of RESTful API (Application Program Interface) endpoints. A RESTful

API is an architectural style for an API that uses Hypertext Transfer Protocol (HTTP)

requests to access and use data [29]. These endpoints were defined to handle specific

functionalities such as data retrieval, data storage, and dynamic content delivery. Each

endpoint was mapped to a Python function, making it straightforward to implement

logic that interacted directly with the backend database. The API was designed with a

clear structure where each route was associated with HTTP methods that defined

11

client interactions with the server. For instance, GET requests fetched data and POST

requests submitted new data. Table 5.1 lists the endpoints that can be accessed.

Table 5.1 Web Endpoints

Endpoint Method Description Response

‘/get-flights’ GET
Returns a list of all flights

from the database

JSON with a list of flights

‘/get-flight-

data’
GET

Returns detailed flight data

based on the flight ID

JSON with flight details and

associated flight data

‘/get-db-

tables’
GET

Lists all database tables JSON with a list of database

tables

‘/get-db-

columns’
GET

Lists all columns for a

specified table.

JSON with column details of

a specified table.

‘/get-db-

column-data’
GET

Retrieves data for a specified

column in a specified table

JSON with data from the

specified column

‘/get-db-table-

data’
GET

Retrieves all or filtered data

from a specified table

JSON with data from the

specified table

‘/upload’ POST
Stores uploaded flight data

into the database

Confirmation message of

data storage

‘/flight-data’
GET

POST

Serves the main page of the

web application

HTML of the main page

‘/database’
GET

POST

Serves the database page of

the web app

HTML of the database page

‘/add-data’
GET

POST

Serves the data ingestion

page of the web app

HTML of the data ingestion

page

‘/export-data’
GET

POST

Serves the data extraction

page and handles data export

HTML of the data extraction

page of exported CSV file

To manage database interactions, SQL Alchemy was used as the Object-Relational

Mapping (ORM) tool. The ORM facilitates the communication between the application

and the database by using high-level entities such as classes, which mirror the tables

in the database [27]. Models in SQL Alchemy defined the structure of the database,

which simplified tasks like querying the database and manipulating data entries.

For the frontend, Vanilla JavaScript was used to make the application lightweight. This

choice avoided the overhead associated with larger frameworks. JavaScript interfaced

with the Flask backend via AJAX calls, fetching and posting data asynchronously to

provide an uninterrupted user experience without the need for page reloads.

5.4 LURA Dash Features

“LURA Dash” offered multiple pages that enabled users to interact with data in various

formats. The main tab, illustrated in Figure 5.1, allowed users to select a flight and

display it on the screen. The interface featured widgets including an altitude versus

time graph, vertical velocity and acceleration, and a flight path representation based

on sensor fusion, along with other statistics. The "Run from Beginning" button played

an entire flight. Users could stop at any point to examine a particular moment in time.

12

Figure 5.1 Main LURA Dash tab, data is displayed from the active controlled test flight

LURA Dash included tabs for easy handling of CSV-formatted data from the flight

computer. Users could upload the flight data into the database using the tool shown

on the left. Once visualised and validated, any flight data could be formatted in the

appropriate form for the input of the gain tunning in MATLAB using the tool on the right.

The raw flight data did not match the input format used for the controller gain tuning.

The following parameters—altitude, vertical velocity, mass, longitudinal moment of

inertia, rotational moment of inertia, centre of gravity location and Mach number—were

derived from the raw values as the equations shown in Appendix F. After conversion,

the data was compiled into a CSV file. This file could then be integrated into MATLAB,

to enable the tuning of the controller with real-world data—a significant enhancement

from the previous reliance on simulated data alone.

Figure 5.2 Pages on LURA Dash: the import of a new flight in the database (left)

and the export of a flight into a MATLAB controller input format (right)

13

Chapter 6. Pipeline Integration

6.1 Introduction

The final phase of the project was

marked by the integration of all

components into a cohesive data

pipeline. This process was used

to validate the system's

performance against the

anticipated outcome from the

MATLAB simulation and maintain

compatibility between stages.

The architecture is illustrated in

Figure 6.1, which demonstrates

the data flow, starting from

collection and storage, followed

by its conversion in various

formats, which enables transition

among distinct subsystems.

The effectiveness of the integration was tested following a flight campaign. Data was

extracted from the flight computer using PuTTY’s serial terminal interface and then

converted to CSV format. The dashboard required users to enter details such as the

rocket’s name, engine type, date, time and wind conditions. Following data

visualisation, the information was then exported in a modified CSV format suitable for

recalibrating the MATLAB model’s gains. The pipeline eliminated the need for any

custom scripts or additional steps for data conversion.

6.2 Pipeline Discussion and Results

6.2.1 Pipeline Throughput

In the post-flight evaluation, the data pipeline's throughput was quantified at

approximately 0.622 MB per minute, which includes the duration of data retrieval from

the flight hardware to its eventual ingestion into the database. The primary constraint

was the NAND Flash's read speed, which currently outputs approximately 88 readings

per second. At 100Hz, the total test flight yielded 6557 readings, which translates to

74.098 seconds dedicated solely to data extraction. An additional source in processing

time is attributed to the manual transfer of the CSV file from the flight hardware. It was

Figure 6.1 System Integration

14

deemed appropriate for the following firmware iteration to have a more optimised

reading routine for the NAND Flash to reduce the time footprint of the data extraction

process and, by extension, the overall efficiency of the pipeline.

When the flight results were ingested into the database via the dashboard, the system

required 6.227 seconds. To assess scalability, the system was subjected to a

simulated data increase by a factor of ten, 65570 entries corresponding to about

12.418 hours of flight. The findings revealed a linear performance, with only a nominal

increase in the database ingestion period to 58.263 seconds.

6.2.2 Storage Capabilities

During the test launch, the data acquisition system used 2416 Kb of storage, with the

data collection process spanning 74.092 seconds. Given the small storage

requirements, it is anticipated that the database can accommodate data from multiple

future flights, even with substantial increases in data acquisition rates. For instance,

elevating the main loop frequency from 1000Hz to 3000Hz, or extended flight durations

due to factors such as wind drift or premature deployment of the main parachute, would

likely not inflate the data size beyond 20 Mb for each launch.

6.2.3 Cloud Hosting Implications

This projection aligns with the planned transition to cloud-based storage solutions.

Utilising a service such as Cloud SQL, it is estimated that the cost would remain

economical at approximately $2.57 per month, as indicated by current pricing models

[18]. This calculation is based on a lightweight 50 Gb database instance, operational

24 hours a day, tailored to the team’s needs that do not require constant database

access. As an alternative, leveraging a custom server setup with a Raspberry Pi,

another small single-board computer, could offer a cost-free solution while still fulfilling

the project's data hosting requirements.

6.2.4 Adaptability

Additionally, the pipeline's architecture is adaptable. Modifications to the firmware,

provided they maintain standard readings—barometric pressure, acceleration, IMU,

temperature, and GNSS data—do not impact the database or the dashboard interface.

Similarly, updates to the control system are accommodated as long as the input data

derived from flight simulations are consistent. As a result, the core functionality of the

architecture remains unaffected by changes in hardware or software. The pipeline is

inheritably flexible and can evolve with the project’s requirements.

15

Chapter 7. Conclusion and Future Work

7.1 Achievements

The project met all its objectives, contributing to the development of an active

stabilisation system for sounding rockets. Firstly, the flight firmware that supports an

active controller was developed in C, bare metal. The setup included the main routine,

helper functions, and controller logic initially created in MATLAB. Methods for storing

and visualising flight data were also developed and tested. These components were

successfully integrated into a data pipeline that streamlines the development and

refinement of a sounding rocket VOS stabilisation system.

7.2 Conclusion

This report details the design and implementation of a data pipeline integral to a rocket

flight controller application, which bridges firmware and software components. This

system handled the data demands associated with a rocket launch and multiple

additional tests, achieving a throughput of approximately 0.622 MB per minute while

maintaining data integrity.

A significant feature of the project was the incorporation of real-flight data into the

MATLAB-based controller, which aided the analytical capabilities during post-flight

analyses. This allowed for more modifications, as there was a better understanding of

the dataset and a reassurance it is correct as it was real life.

The successful implementation of the data pipelines not only fulfilled the initial project

goals but also laid a solid groundwork for future work in aerospace control systems.

The system was designed to require minimal user intervention, thus optimising the

efficiency of data flow across various components of the pipeline. This is beneficial for

the improvement of the VOS control of sounding rockets equipped with canards.

7.3 Future Work

For future improvements, several steps are recommended to improve the pipeline:

• Data Throughput: A more efficient routine for reading NAND Flash could decrease

data extraction times and increase throughput.

• Dashboard Functionality: New widgets could be added to the dashboard to show

how the canards respond to the orientation of the rocket. This would allow for better

control and understanding of their impact on stabilisation.

• Cloud Integration: Moving both the database and the web application to the cloud

would allow team members to access data from any location, not just locally.

16

References

[1] T. Noga, M. Michałów, and G. Ptasiński, “Comparison of dispersion calculation

methods for sounding rockets,” Journal of Space Safety Engineering, vol. 8, Sep.

2021, doi: 10.1016/j.jsse.2021.08.006.

[2] F. Sève, S. Theodoulis, P. Wernert, M. Zasadzinski, and M. Boutayeb, “Flight

Dynamics Modeling of Dual-Spin Guided Projectiles,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 53, no. 4, pp. 1625–1641, Aug. 2017,

doi: 10.1109/TAES.2017.2667820.

[3] S. Chang, Z. Wang, and T. Liu, “Analysis of Spin-Rate Property for Dual-Spin-

Stabilized Projectiles with Canards,” Journal of Spacecraft and Rockets, vol. 51,

no. 3, pp. 958–966, 2014, doi: 10.2514/1.A32830.

[4] S. Chang, D. Li, and W. Wei, “Swerve Solution for Spin-Stabilized Projectiles with

Canards: A Revisit,” Journal of Spacecraft and Rockets, vol. 58, no. 5, pp. 1352–

1360, 2021, doi: 10.2514/1.A34964.

[5] T. Youds, “Development Of An Active Control System For A Canard-Controlled

Sounding Rocket,” Leeds: University of Leeds, vol. Masters Thesis, 2023.

[6] B. Cradock, “Design and Development of an Embedded Flight Computer for a

Canard-Controlled Sounding Rocket,” Leeds: University of Leeds, vol. Masters

Thesis, 2023.

[7] M. W. V. Alstyne, G. G. Parker, and S. P. Choudary, “Pipelines, Platforms, and

the New Rules of Strategy”.

[8] A. Raj, J. Bosch, H. H. Olsson, and T. J. Wang, “Modelling Data Pipelines,” in

2020 46th Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), Aug. 2020, pp. 13–20. doi:

10.1109/SEAA51224.2020.00014.

[9] V. Nair et al., “Team 116 Project Technical Report for the 2019 IREC”.

[10] “Gryphon I,” LURA. Accessed: Apr. 20, 2024. [Online]. Available:

https://leedsrocketry.co.uk/projects/gryphon-1/

[11] T. Moleski, T. Berger, J. Browne, A. Scott, B. Hesson, and D. Denner, “Project

The Big One Team 23 Technical Report for the 2018 IREC”.

[12] “Altus Metrum.” Accessed: Apr. 20, 2024. [Online]. Available:

https://altusmetrum.org/index.html

[13] N. Christopher et al., “Shark of the Sky Hybrid Rocket”.

[14] “Advanced Control Team – Delft Aerospace Rocket Engineering.” Accessed: Apr.

20, 2024. [Online]. Available: https://dare.tudelft.nl/projects/act/

17

[15] J. Matevska, E. Noack, M. Reinhold, and E. Diekmann, Decentralised Avionics

and Software Architecture for Sounding Rocket Missions. 2020. doi:

10.18420/SE2020_66.

[16] “Team Project Support | UKRA - United Kingdom Rocketry Association.”

Accessed: Apr. 20, 2024. [Online]. Available: http://www.ukra.org.uk/tps

[17] “r-spacex/SpaceX-API.” r/SpaceX, Apr. 28, 2024. Accessed: Apr. 28, 2024.

[Online]. Available: https://github.com/r-spacex/SpaceX-API

[18] “SpaceX Dashboard.” Accessed: Apr. 28, 2024. [Online]. Available:

https://tdunn891.github.io/spacex-dashboard/

[19] “COSMIC AEROSPACE TOWER,” Cosmic Aerospace Technologies. Accessed:

Dec. 28, 2023. [Online]. Available: https://cosmicaero.space/tower

[20] “General · AlexandraPosta/aptos,” GitHub. Accessed: Apr. 28, 2024. [Online].

Available: https://github.com/AlexandraPosta/aptos

[21] Beginning STM32. Accessed: Apr. 20, 2024. [Online]. Available:

https://link.springer.com/book/10.1007/978-1-4842-3624-6

[22] D. M. Henderson, “Shuttle Program. Euler angles, quaternions, and

transformation matrices working relationships,” Mission Planning and Analysis

Division, 1977, [Online]. Available:

https://ntrs.nasa.gov/api/citations/19770024290/downloads/19770024290.pdf

[23] “Sensor Logger,” Kelvin Choi. Accessed: Apr. 28, 2024. [Online]. Available:

https://www.tszheichoi.com/sensorlogger

[24] A. R. Munappy, J. Bosch, and H. H. Olsson, “Data Pipeline Management in

Practice: Challenges and Opportunities,” in Product-Focused Software Process

Improvement, M. Morisio, M. Torchiano, and A. Jedlitschka, Eds., in Lecture

Notes in Computer Science. Cham: Springer International Publishing, 2020, pp.

168–184. doi: 10.1007/978-3-030-64148-1_11.

[25] M. Abourezq and A. Idrissi, “Database-as-a-Service for Big Data: An Overview,”

ijacsa, vol. 7, no. 1, 2016, doi: 10.14569/IJACSA.2016.070124.

[26] A. Siddiqa, A. Karim, and A. Gani, “Big data storage technologies: a survey,”

Frontiers Inf Technol Electronic Eng, vol. 18, no. 8, pp. 1040–1070, Aug. 2017,

doi: 10.1631/FITEE.1500441.

[27] U. Patkar, P. Singh, H. Panse, S. Bhavsar, and C. Pandey, “PYTHON FOR WEB

DEVELOPMENT,” IJCSMC, vol. 11, no. 4, pp. 36–48, Apr. 2022, doi:

10.47760/ijcsmc.2022.v11i04.006.

[28] A. L. Sayeth Saabith, M. M. M. Fareez, and T. Vinothraj, “Python Current Trend

Applications - An Overview,” IJAERD, vol. 6, no. 10, pp. 6–12, 2019.

18

[29] “What is a REST API? | IBM.” Accessed: Apr. 28, 2024. [Online]. Available:

https://www.ibm.com/topics/rest-apis

19

Appendix A – Firmware Flowchart

Figure A.1 Detailed Firmware Flow Diagram

20

Appendix B – Dashboard GitHub README file

Overview

LURA Dash is a new web interface tool designed by Leeds Universiy Rocketry

Association for visualisation of flight data. It offers multiple pages that enable users to

interact with data in various formats.

The main page features widgets including an altitude versus time graph, vertical

velocity, vertical acceleration, and a flight path representation based on sensor fusion,

along with other statistics. The "Run from Beginning" button plays an entire flight.

Users can stop at any point to examine a particular moment in time. LURA Dash

includes tabs for easy handling of CSV-formatted data from the Aptos flight computer.

Once visualised and validated, any flight data can be formatted in the appropriate form

for the input of our custom controller in MATLAB.

Features

- load flight off the flight computer

- visualise the final outcome of the flight

- play the entire rocket flight and pause as needed

- visualise the data straight from the database; apply filters as needed

- import CSV file with new flight

- export to CSV that is compatible for the comtroller tuning in MATLAB

Structure

The repository is structured as follows:

web_server
|──README.md
|
|──database
| ├──commands.py # MYSQL Database queries
| ├──connect.py # MYSQL Database configuration
| ├──fakedata.py # Fake data generator for the database
| └──models.py # MYSQL Database tables definition
|
|──static
| ├──3d # 3D models using in the frontend
| ├──assets # Images using in the frontend
| ├──css # The main css file
| └──js
| ├──add-data.js # Contains functions used to ingest new data in the db
| ├──custom-card.js # Custon widgets class
| ├──custom-data.js # Custon flight data class
| ├──database.js # Database interacion from frontend
| ├──export.js # Export flight into csv for MATLAB input

21

| ├──flight.js # Functions used to display flight data on the
dashboard.
| ├──load-flight-data.js # Code for the worker that loads the flight data.
| └──telemetry.js # Display telemetry data on the dashboard.
|
|──templates
| ├──add-data.html # HTML page that allows user to input flight data
| ├──base.html # HTML template for the all the rest of the pages
| ├──database.html # HTML page that allows user to filter the database
| ├──export-data.html # HTML page to export data to Simulink input
| ├──flight-data.html # main HTML page for flight data visualisation
| ├──flight.html # HTML template for the flight related pages
| └──telemetry-data.html # HTML page for the telemetry connection
|
──app # Entry point for the application

Requirements

- python 3.6+

- flask

- flask mysql connector

- flask SQLAlchemy

To set up the webserver

- install python 3.6+

- setup virtual environment using pip install virtualenv

- create environment using virtualenv env

- activate .\env\Scripts\activate

- pip install flask

- pip install flask-cors

- pip install sqlalchemy

- pip install Flask-SQLAlchemy

- pip install mysql-connector-python

Trobleshoot

When debugging the flask app, you might not hit the breakpoint using Visual Studio.

Make sure toset the "args" from launch.json to --no-debugger, --no-reload go to app.py

and run the app with debug set to False.

22

Appendix C – Controller Transition from MATLAB to C

The header file orientation_utils.h provides the necessary definitions and function

prototypes to convert raw gyroscope data into quaternion and Euler angle formats.

This file defines types for Euler angles and quaternions, used for orientation

representation in 3D space, and includes an orientation_data structure that maintains

the current and previous states of the types. It also declares functions to initialise,

update, and manipulate orientation data based on inputs from the LSM6DS3

gyroscope sensor.

/*

 Leeds University Rocketry Organisation - LURA

 Author Name: Alexandra Posta

 Description: Header file to transform gyroscope raw data to Quateniun

and Euler

*/

#ifndef ORIENTATION_UTILS_H

#define ORIENTATION_UTILS_H

#include "drivers/LSM6DS3_driver.h"

#include <math.h>

#define M_PI_F 3.14159265358979323846f

typedef struct Euler {

 float roll;

 float pitch;

 float yaw;

} Euler;

typedef struct Quaternion {

 float w;

 float x;

 float y;

 float z;

} Quaternion;

typedef struct orientation_data {

 Quaternion current_quaternion;

 Quaternion current_rate_quaternion;

 Euler current_euler;

 Euler current_rate_euler;

 Euler previous_euler;

} orientation_data;

23

/**

 @brief Convert euler angles to quaternion

 @param e Euler angles

 @param q Quaternion

*/

void orientation_quaternion_to_euler(Quaternion* q, Euler* e);

/**

 @brief Initialise the orientation data

 @note Set the orientation_data structure to 0 to initialise memory

*/

void orientation_init(orientation_data* orientation, LSM6DS3_data*

_LSM6DS3_data);

/**

 @brief Update the orientation data based on gyro readings

 @param dt Time difference in microseconds

 @param orientation Orientation data structure

 @param _LSM6DS3_data Gyroscope data

*/

void orientation_update(unsigned int dt, orientation_data* orientation,

LSM6DS3_data* _LSM6DS3_data, bool pad);

/**

 @brief Check if rocket is moving based on acceleration vector

 @param _LSM6DS3_data Gyroscope data

 @param vector Acceleration vector

 @return True if the vector is valid

*/

bool OrientationAccelerationVector(LSM6DS3_data* _LSM6DS3_data, float

vector[]);

/**

 @brief Check if stationary, to correct gyro drift, based on

acceleration vector

 @param _orientation Orientation data structure

 @param accel Acceleration vector

 @param correction Quaternion correction

*/

void OrientationAccelerationQuaternion(orientation_data* _orientation,

float accel[], Quaternion* correction);

#endif /* ORIENTATION_UTILS_H */

Figure C.1 Source code for orientation_utils.h

24

The source file orientation_utils.c, implements functions to transform gyroscope data

into quaternion and Euler angle formats. The file includes essential functions for

initialising orientation data, updating it based on gyroscope and accelerometer

readings, and converting orientation represented by quaternions into Euler angles.

Additionally, the source file handles coordinate system adjustments and gravity

correction based on sensor data to maintain accurate orientation tracking despite

external disturbances.

/*

 Leeds University Rocketry Organisation - LURA

 Author Name: Alexandra Posta

 Description: Source file to transform gyroscope data to quateniun

and euler

*/

#include "orientation_utils.h"

void orientation_quaternion_to_euler(Quaternion* q, Euler* e) {

 // XYZ order

 float qw2 = q->w * q->w;

 float qx2 = q->x * q->x;

 float qy2 = q->y * q->y;

 float qz2 = q->z * q->z;

 // Calculate direction cosine matrix

 float dcm32 = 2 * (q->y * q->z - q->x * q->w);

 float dcm33 = qw2 - qx2 - qy2 + qz2;

 float dcm31 = 2 * (q->x * q->z + q->y * q->w);

 float dcm21 = 2 * (q->x * q->y - q->z * q->w);

 float dcm11 = qw2 + qx2 - qy2 - qz2;

 // Calculate euler angles

 e->roll = (float)atan2(-dcm32, dcm33);

 e->pitch = (float)asin(dcm31);

 e->yaw = (float)atan2(-dcm21, dcm11);

}

void orientation_change_accel_coordinate_system(LSM6DS3_data*

_LSM6DS3_data) {

 int32_t temp_y = _LSM6DS3_data->y_accel;

 _LSM6DS3_data->y_accel = _LSM6DS3_data->z_accel;

 _LSM6DS3_data->z_accel = -temp_y;

}

void orientation_init(orientation_data* orientation, LSM6DS3_data*

_LSM6DS3_data) {

 float accel_vector[4];

25

 orientation_change_accel_coordinate_system(_LSM6DS3_data);

 if (OrientationAccelerationVector(_LSM6DS3_data, &accel_vector)) {

//try to get an acceleration vector to use as starting angle

 float pitch_angle_accel =

atan(accel_vector[1]/sqrt((accel_vector[0]*accel_vector[0])+(accel_vect

or[2]*accel_vector[2])));

 float yaw_angle_accel =

atan(accel_vector[0]/sqrt((accel_vector[1]*accel_vector[1])+(accel_vect

or[2]*accel_vector[2])));

 // Calculate initial quaternion components based on the

estimated roll and pitch angles

 float cy = cos(pitch_angle_accel * 0.5f);

 float sy = sin(pitch_angle_accel * 0.5f);

 float cp = cos(yaw_angle_accel * 0.5f);

 float sp = sin(yaw_angle_accel * 0.5f);

 orientation->current_quaternion.w = cp * cy;

 orientation->current_quaternion.x = sy * sp;

 orientation->current_quaternion.y = cp * sy;

 orientation->current_quaternion.z = sp * cy;

 orientation_quaternion_to_euler(&orientation-

>current_quaternion, &orientation->current_euler);

 // Set initial values for previous_euler

 orientation->previous_euler.roll = orientation-

>current_euler.roll;

 orientation->previous_euler.pitch = orientation-

>current_euler.pitch;

 orientation->previous_euler.yaw = orientation-

>current_euler.yaw;

 } else { //accel wasn't close enough to 1g

 // Set initial values for current_quaternion

 orientation->current_quaternion.w = 1.0;

 orientation->current_quaternion.x = 0.0;

 orientation->current_quaternion.y = 0.0;

 orientation->current_quaternion.z = 0.0;

 // Set initial values for current_euler

 orientation->current_euler.roll = 0.0;

 orientation->current_euler.pitch = 0.0;

 orientation->current_euler.yaw = 0.0;

 // Set initial values for previous_euler

 orientation->previous_euler.roll = 0.0;

 orientation->previous_euler.pitch = 0.0;

 orientation->previous_euler.yaw = 0.0;

 }

 // Set initial values for current_rate_quaternion

 orientation->current_rate_quaternion.w = 0.0;

26

 orientation->current_rate_quaternion.x = 0.0;

 orientation->current_rate_quaternion.y = 0.0;

 orientation->current_rate_quaternion.z = 0.0;

 // Set initial values for current_rate_euler

 orientation->current_rate_euler.roll = 0.0;

 orientation->current_rate_euler.pitch = 0.0;

 orientation->current_rate_euler.yaw = 0.0;

}

void orientation_change_coordinate_system(LSM6DS3_data* _LSM6DS3_data)

{

 int32_t temp_x = _LSM6DS3_data->x_rate;

 _LSM6DS3_data->x_rate = _LSM6DS3_data->y_rate;

 _LSM6DS3_data->y_rate = temp_x;

 _LSM6DS3_data->z_rate *= -1;

}

// Update orientation data

// On the sensor -> X: PITCH, Y: ROLL, Z: YAW (right rule)

// On the controller -> X: ROLL, Y: PITCH, Z: -YAW (left rule)

void orientation_update(unsigned int dt, orientation_data* orientation,

LSM6DS3_data* _LSM6DS3_data, bool pad) {

 // Change orientation data to match the controller coordinate

system

 orientation_change_coordinate_system(_LSM6DS3_data);

 orientation_change_accel_coordinate_system(_LSM6DS3_data);

 float wx = ((float)_LSM6DS3_data->x_rate * M_PI_F / 180.0f) /

1000.0f; // millidegrees/second -> radians/second

 float wy = ((float)_LSM6DS3_data->y_rate * M_PI_F / 180.0f) /

1000.0f;

 float wz = ((float)_LSM6DS3_data->z_rate * M_PI_F / 180.0f) /

1000.0f;

 float qw = orientation->current_quaternion.w;

 float qx = orientation->current_quaternion.x;

 float qy = orientation->current_quaternion.y;

 float qz = orientation->current_quaternion.z;

 // Calculate the derivative of the quaternion

 orientation->current_rate_quaternion.w = 0.5f * (-wx * qx - wy * qy

- wz * qz);

 orientation->current_rate_quaternion.x = 0.5f * (wx * qw + wz * qy

- wy * qz);

 orientation->current_rate_quaternion.y = 0.5f * (wy * qw - wz * qx

+ wx * qz);

 orientation->current_rate_quaternion.z = 0.5f * (wz * qw + wy * qx

- wx * qy);

27

 // Update quaternion using the derivative

 orientation->current_quaternion.w += orientation-

>current_rate_quaternion.w * (float)dt * 1e-6f;

 orientation->current_quaternion.x += orientation-

>current_rate_quaternion.x * (float)dt * 1e-6f;

 orientation->current_quaternion.y += orientation-

>current_rate_quaternion.y * (float)dt * 1e-6f;

 orientation->current_quaternion.z += orientation-

>current_rate_quaternion.z * (float)dt * 1e-6f;

 float accel_vector[4];

 if(OrientationAccelerationVector(_LSM6DS3_data, &accel_vector) &&

pad){ //try to get an acceleration vector to use as starting angle

 float pitch_angle_accel =

atan(accel_vector[1]/sqrt((accel_vector[0]*accel_vector[0])+(accel_vect

or[2]*accel_vector[2])));

 float yaw_angle_accel =

atan(accel_vector[0]/sqrt((accel_vector[1]*accel_vector[1])+(accel_vect

or[2]*accel_vector[2])));

 // Calculate initial quaternion components based on the

estimated roll and pitch angles

 float cy = cos(pitch_angle_accel * 0.5f);

 float sy = sin(pitch_angle_accel * 0.5f);

 float cp = cos(yaw_angle_accel * 0.5f);

 float sp = sin(yaw_angle_accel * 0.5f);

 orientation->current_quaternion.w = 0.9f * orientation-

>current_quaternion.w + 0.1f * cp * cy;

 orientation->current_quaternion.x = 0.9f * orientation-

>current_quaternion.x + 0.1f * sy * sp;

 orientation->current_quaternion.y = 0.9f * orientation-

>current_quaternion.y + 0.1f * cp * sy;

 orientation->current_quaternion.z = 0.9f * orientation-

>current_quaternion.z + 0.1f * sp * cy;

 }

 // Normalise quaternions

 float norm = sqrtf(orientation->current_quaternion.w * orientation-

>current_quaternion.w +

 orientation->current_quaternion.x * orientation-

>current_quaternion.x +

 orientation->current_quaternion.y * orientation-

>current_quaternion.y +

 orientation->current_quaternion.z * orientation-

>current_quaternion.z);

 // Apply normalisation

 orientation->current_quaternion.w /= norm;

28

 orientation->current_quaternion.x /= norm;

 orientation->current_quaternion.y /= norm;

 orientation->current_quaternion.z /= norm;

 // Convert quaternion to euler angles

 orientation->previous_euler = orientation->current_euler;

 orientation_quaternion_to_euler(&orientation->current_quaternion,

&orientation->current_euler);

 // Calculate the derivative of the euler angles

 if ((orientation->current_euler.roll < (-(M_PI_F) + 0.6f)) &&

orientation->previous_euler.roll > (M_PI_F - 0.6f)) {

 orientation->current_rate_euler.roll = (orientation-

>current_euler.roll + 2 * M_PI_F - orientation->previous_euler.roll) /

((float)dt * 1e-6f);

 } else {

 orientation->current_rate_euler.roll = (orientation-

>current_euler.roll - orientation->previous_euler.roll) / ((float)dt *

1e-6f);

 }

 orientation->current_rate_euler.pitch = (orientation-

>current_euler.pitch - orientation->previous_euler.pitch) / ((float)dt*

1e-6f);

 orientation->current_rate_euler.yaw = (orientation-

>current_euler.yaw - orientation->previous_euler.yaw) / ((float)dt *

1e-6f);

}

bool OrientationAccelerationVector(LSM6DS3_data* _LSM6DS3_data, float

vector[]){

 //convert from milli g to g

 vector[0] = _LSM6DS3_data->x_accel/1000.0;

 vector[1] = _LSM6DS3_data->y_accel/1000.0;

 vector[2] = _LSM6DS3_data->z_accel/1000.0;

 //check magnitude (in g)

 float magnitude = sqrtf(vector[0]*vector[0] + vector[1]*vector[1] +

vector[2]*vector[2]);

 //normalise the vector

 vector[0] /= magnitude;

 vector[1] /= magnitude;

 vector[2] /= magnitude;

 vector[3] = magnitude;

 if (magnitude < 0.9 || magnitude > 1.1){ //if not close to 1G

 return false;

29

 }

 return true;

}

void OrientationAccelerationQuaternion(orientation_data* _orientation,

float accel_vector[], Quaternion* correction){

 Quaternion q_est = _orientation->current_quaternion;

 // Estimate gravity direction in the world frame using current

orientation estimate

 float gw_x = 2 * (q_est.x * q_est.z - q_est.w * q_est.y);

 float gw_y = 2 * (q_est.w * q_est.x + q_est.y * q_est.z);

 float gw_z = q_est.w * q_est.w - q_est.x * q_est.x - q_est.y *

q_est.y + q_est.z * q_est.z;

 // Calculate error between estimated gravity direction and

accelerometer readings

 float error_x = 2 * (accel_vector[0] * gw_x + accel_vector[1] *

gw_y + accel_vector[2] * gw_z);

 float error_y = 2 * ((accel_vector[1] * gw_z - accel_vector[2] *

gw_y));

 float error_z = 2 * ((accel_vector[2] * gw_x - accel_vector[0] *

gw_z));

 // Compute feedback correction quaternion

 float alpha = 0.02f; // Correction gain

 correction->w = 1.0f;

 correction->x = alpha * error_x;

 correction->y = alpha * error_y;

 correction->z = alpha * error_z;

}

Figure C.2 Source code for orientation_utils.c

30

The header file LQR_controller_driver.h outlines the interface and structure for

implementing an LQR controller. This file declares the LQR_controller struct, which

contains arrays for handling different gain sets based on the rocket's velocity and

orientation state.

/*

 Leeds University Rocketry Organisation - LURA

 Author Name: Alexandra Posta

 Description: Include LQR Controller header file

*/

#ifndef LQR_CONTROLLER_DRIVER_H

#define LQR_CONTROLLER_DRIVER_H

#include "orientation_utils.h"

#define STATE_SPACE_DIM 6 // Euler 3xangle 3xrates

#define NUM_GAINS 50

#define NUM_SERVOS 4

#define MAX_VELOCITY 120 // ms-1

#define MIN_VELOCITY 30 // ms-1

#define CANANDS_THRESHOLD 1500 // milidegree*1000

typedef struct LQR_controller {

 float* current_gain;

 float current_gain_index;

 float gain[NUM_GAINS * STATE_SPACE_DIM * NUM_SERVOS];

 float available_gains[NUM_GAINS * NUM_SERVOS * STATE_SPACE_DIM];

 float avg_gains[NUM_GAINS][NUM_SERVOS][STATE_SPACE_DIM];

 float zero_gains[NUM_SERVOS * STATE_SPACE_DIM];

} LQR_controller;

/**

 @brief Initialise the LQR controller

 @param lqr LQR controller structure

*/

void LQR_init(LQR_controller* lqr);

/**

 @brief Update the gains of the LQR controller

 @param lqr LQR controller structure

 @param velocity Current velocity of the rocket in m/s

 @note the gains are set to zero if the velocity is below or above a

threshold

*/

void LQR_update_gain(LQR_controller* lqr, int velocity);

/**

 @brief Perform the LQR control

31

 @param lqr LQR controller structure

 @param orientation Current orientation data

 @param servo_defs Servo deflections angles

*/

void LQR_perform_control(LQR_controller* lqr, orientation_data

orientation, ServoDeflections* servo_defs);

#endif /* LQR_CONTROLLER_DRIVER_H */

Figure C.3 Source code for lqr_controller.h

32

The source file lqr_controller.c LQR controller designed for managing rocket

orientation and stability. It includes several functions: LQR_init initialises the controller

by setting up initial gain values across arrays. The LQR_update_gain function

dynamically adjusts the controller’s gains based on the rocket's velocity, applying zero

gains if the velocity falls outside predefined safe operational ranges, thus maintaining

control stability. Additionally, LQR_perform_control calculates necessary servo

deflections based on current orientation and selected gains, incorporating safety

thresholds to prevent exceeding mechanical limits.

/*

 Leeds University Rocketry Organisation - LURA

 Author Name: Alexandra Posta

 Description: Include LQR Controller source file

*/

#include "lqr_controller.h"

int _ravel_index_2d(int i, int j)

{

 return i * STATE_SPACE_DIM + j;

}

int _ravel_index_3d(int i, int j, int k) {

 return i * STATE_SPACE_DIM * NUM_SERVOS + j * STATE_SPACE_DIM + k;

}

void LQR_init(LQR_controller* lqr) {

 // Set the zero gain array to zero

 for (uint8_t i = 0; i < sizeof(lqr->zero_gains); i++) {

 lqr->zero_gains[i] = 0;

 }

 // Initialise the current gain and index to zero

 lqr->current_gain = &lqr->zero_gains[0];

 lqr->current_gain_index = 0.0f;

 // Initialise average gains

 double _avg_gains[NUM_GAINS][NUM_SERVOS][STATE_SPACE_DIM] = {

 {

 {5.9761e-05, -0.37796, -1.1106e-15, 0.26723, -0.38847, -

2.2002e-16},

 {5.9761e-05, 0.37796, 1.1899e-15, 0.26723, 0.38847,

2.4892e-16},

 {5.9761e-05, 1.3538e-15, -0.37796, 0.26723, 6.8727e-16, -

0.38847},

33

 {5.9761e-05, -1.1147e-15, 0.37796, 0.26723, -5.3388e-16,

0.38847},

 },

 {

 {5.9761e-05, -0.37796, -1.1945e-15, 0.26723, -0.3698, -

6.5912e-16},

 {5.9761e-05, 0.37796, 1.1945e-15, 0.26723, 0.3698, 8.5519e-

16},

 {5.9761e-05, 1.1922e-15, -0.37796, 0.26723, -5.9471e-17, -

0.3698},

 {5.9761e-05, -9.2426e-16, 0.37796, 0.26723, 4.3445e-16,

0.3698},

 },

 {

 {5.9761e-05, -0.37796, -2.541e-16, 0.26723, -0.35334,

3.2436e-16},

 {5.9761e-05, 0.37796, 1.0805e-16, 0.26723, 0.35334, -

3.8215e-16},

 {5.9761e-05, 5.845e-16, -0.37796, 0.26723, 4.866e-16, -

0.35334},

 {5.9761e-05, -7.2657e-16, 0.37796, 0.26723, -5.5427e-16,

0.35334},

 },

 // REST OF THE CONTROLLER GAINS ARE NOT INCLUDED TO AID

READABILITY

 };

 // Include available gains

 for (int i = 0; i < NUM_GAINS; i++) {

 for (int row = 0; row < NUM_SERVOS; row++) {

 for (int col = 0; col < STATE_SPACE_DIM; col++) {

 lqr->avg_gains[i][row][col] =

(float)_avg_gains[i][row][col];

 lqr->available_gains[_ravel_index_3d(i, row, col)] =

(float)_avg_gains[i][row][col];

 }

 }

 }

 // Set the current gain

 lqr->current_gain = &lqr->available_gains[0];

}

void LQR_update_gain(LQR_controller* lqr, int velocity) {

 // Update gains based on speed

 if (velocity < MIN_VELOCITY) { // Stop controller if speed to high

or low

 lqr->current_gain = &lqr->zero_gains[0];

 } else if (velocity > MAX_VELOCITY) {

34

 lqr->current_gain_index = 49;

 lqr->current_gain = &lqr-

>available_gains[_ravel_index_3d((int)lqr->current_gain_index, 0, 0)];

 } else {

 lqr->current_gain_index = ((float)NUM_GAINS - 1) *

(float)(velocity - MIN_VELOCITY) / (float)(MAX_VELOCITY -

MIN_VELOCITY);

 lqr->current_gain = &lqr-

>available_gains[_ravel_index_3d((int)lqr->current_gain_index, 0, 0)];

 }

}

void LQR_perform_control(LQR_controller* lqr, orientation_data

orientation, ServoDeflections* servo_defs) {

 // Extract Euler angles and Rates

 float _orientation[STATE_SPACE_DIM] =

{orientation.current_euler.roll,

 orientation.current_euler.pitch,

 orientation.current_euler.yaw,

 orientation.current_rate_euler.roll,

 orientation.current_rate_euler.pitch,

 orientation.current_rate_euler.yaw};

 // Perform control

 servo_defs->servo_deflection_1 = 0;

 servo_defs->servo_deflection_2 = 0;

 servo_defs->servo_deflection_3 = 0;

 servo_defs->servo_deflection_4 = 0;

 for (int col = 0; col < STATE_SPACE_DIM; col++) {

 servo_defs->servo_deflection_1 += lqr-

>current_gain[_ravel_index_2d(1, col)] * _orientation[col] * 100.0f *

180.0f / M_PI_F; //store in degrees * 100

 servo_defs->servo_deflection_2 += lqr-

>current_gain[_ravel_index_2d(2, col)] * _orientation[col] * 100.0f *

180.0f / M_PI_F;

 servo_defs->servo_deflection_3 += lqr-

>current_gain[_ravel_index_2d(3, col)] * _orientation[col] * 100.0f *

180.0f / M_PI_F;

 servo_defs->servo_deflection_4 += lqr-

>current_gain[_ravel_index_2d(4, col)] * _orientation[col] * 100.0f *

180.0f / M_PI_F;

 }

 if (servo_defs->servo_deflection_1 > CANANDS_THRESHOLD) {

 servo_defs->servo_deflection_1 = CANANDS_THRESHOLD;

 } else if (servo_defs->servo_deflection_1 < -CANANDS_THRESHOLD) {

 servo_defs->servo_deflection_1 = -CANANDS_THRESHOLD;

35

 }

 if (servo_defs->servo_deflection_2 > CANANDS_THRESHOLD) {

 servo_defs->servo_deflection_2 = CANANDS_THRESHOLD;

 } else if (servo_defs->servo_deflection_2 < -CANANDS_THRESHOLD) {

 servo_defs->servo_deflection_2 = -CANANDS_THRESHOLD;

 }

 if (servo_defs->servo_deflection_3 > CANANDS_THRESHOLD) {

 servo_defs->servo_deflection_3 = CANANDS_THRESHOLD;

 } else if (servo_defs->servo_deflection_3 < -CANANDS_THRESHOLD) {

 servo_defs->servo_deflection_3 = -CANANDS_THRESHOLD;

 }

 if (servo_defs->servo_deflection_4 > CANANDS_THRESHOLD) {

 servo_defs->servo_deflection_4 = CANANDS_THRESHOLD;

 } else if (servo_defs->servo_deflection_4 < -CANANDS_THRESHOLD) {

 servo_defs->servo_deflection_4 = -CANANDS_THRESHOLD;

 }

}

Figure C.4 Source code for orientation_utils.c

36

Appendix D – Firmware Setup

The startup file, displayed below, prepares the environment for the execution of a

firmware application. It is executed immediately after the system is powered up or

reset.

/*

 Leeds University Rocketry Organisation - LURA

 Author Name: Alexandra Posta

 Description: Startup file for the firmware; suitable for STM32L4R5

*/

// Startup code

__attribute__((naked, noreturn)) void _reset(void) {

 // Initialise memory

 extern long _sbss, _ebss, _sdata, _edata, _sidata;

 for (long *src = &_sbss; src < &_ebss; src++) *src = 0;

 for (long *src = &_sdata, *dst = &_sidata; src < &_edata;) *src++ =

*dst++;

 // Call main()

 extern void main(void);

 main();

 for (;;) (void) 0; // Infinite loop

}

extern void SysTick_Handler(void); // Defined in main.c

extern void _estack(void); // Defined in link.ld

// 16 standard and 95 STM32-specific handlers

__attribute__((section(".vectors"))) void (*tab[16 + 95])(void) = {

 _estack, _reset, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

SysTick_Handler};

Figure D.1 Startup file

37

The code snippet below provides a set of system call implementations for newlib, a C

standard library. These system calls handle operations like memory management with

_sbrk, file manipulation routines such as _open, _close, and _unlink, and basic process

controls including _exit and _kill. For instance, _write is redirected to send data serially

over USART1, showing an adaptation to the embedded context where standard

input/output interfaces might not be directly available.

/*

 Leeds University Rocketry Organisation - LURA

 Author Name: Alexandra Posta

 Description: System calls for newlib

*/

#include "mcu.h"

#include <inttypes.h>

#include <stdbool.h>

#include <stdlib.h>

int _fstat(int fd, struct stat *st) {

 if (fd < 0) return -1;

 st->st_mode = S_IFCHR;

 return 0;

}

void *_sbrk(int incr) {

 extern char _end;

 static unsigned char *heap = NULL;

 unsigned char *prev_heap;

 if (heap == NULL) heap = (unsigned char *) &_end;

 prev_heap = heap;

 heap += incr;

 return prev_heap;

}

int _open(const char *path) {

 (void) path;

 return -1;

}

int _close(int fd) {

 (void) fd;

 return -1;

}

int _isatty(int fd) {

 (void) fd;

38

 return 1;

}

void _exit(int status) {

 (void) status;

 for (;;) asm volatile("BKPT #0");

}

void _kill(int pid, int sig) {

 (void) pid, (void) sig;

}

int _getpid(void) {

 return -1;

}

int _read(int fd, char *ptr, int len) {

 (void) fd, (void) ptr, (void) len;

 return -1;

}

int _link(const char *a, const char *b) {

 (void) a, (void) b;

 return -1;

}

int _unlink(const char *a) {

 (void) a;

 return -1;

}

int _stat(const char *path, struct stat *st) {

 (void) path, (void) st;

 return -1;

}

int mkdir(const char *path, mode_t mode) {

 (void) path, (void) mode;

 return -1;

}

int _write(int fd, char *data, int len) {

 (void) fd, (void) data, (void) len;

 if (fd == 1) uart_write_buf(USART1, data, (size_t) len);

 return -1;

}

Figure D.2 System Calls

39

A linker script dictates how the compiler should place the program's sections into the

memory of the target device.

/*

 Leeds University Rocketry Organisation - LURA

 Author Name: Alexandra Posta

 Description: linker script for the HFC firmware; suitable for STM32

*/

ENTRY(_reset);

MEMORY {

 flash(rx) : ORIGIN = 0x08000000, LENGTH = 2048k

 sram(rwx) : ORIGIN = 0x20000000, LENGTH = 192k /* remaining 64k in a

separate address space */

}

_estack = ORIGIN(sram) + LENGTH(sram); /* stack points to end of

SRAM */

SECTIONS {

 .vectors : { KEEP(*(.vectors)) } > flash

 .text : { *(.text*) } > flash

 .rodata : { *(.rodata*) } > flash

 .data : {

 _sdata = .; /* .data section start */

 *(.first_data)

 (.data SORT(.data.))

 _edata = .; /* .data section end */

 } > sram AT > flash

 _sidata = LOADADDR(.data);

 .bss : {

 _sbss = .; /* .bss section start */

 (.bss SORT(.bss.) COMMON)

 _ebss = .; /* .bss section end */

 } > sram

 . = ALIGN(8);

 _end = .; /* for cmsis_gcc.h */

}

Figure D.3 Linker File

40

A Makefile is a configuration file used with the make utility, a tool that automates the

building of executable programs from source code. By defining specific "targets" and

the rules to build these targets, a Makefile is used to automate the process of uploading

or "flashing" the compiled firmware onto a specific hardware device, such as a STM32.

The target executes a series of commands that transfer the binary file to the device’s

memory, enabling it to run the new code directly.

CFLAGS ?= -W -Wall -Wextra -Wundef -Wshadow -Wdouble-promotion \

 -Wformat-truncation -fno-common -Wconversion -Wno-unknown-

pragmas \

 -g3 -Os -ffunction-sections -fdata-sections -I. -Iinclude \

 -mcpu=cortex-m4 -mthumb -mfloat-abi=hard -mfpu=fpv4-sp-d16

$(EXTRA_CFLAGS) \

 -lm

LDFLAGS ?= -Tlink.ld -nostartfiles -nostdlib --specs nano.specs -lc -

lgcc -Wl,--gc-sections -Wl,-Map=$@.map

SOURCES = main.c startup.c syscalls.c STM32_init.c

drivers/MS5611_driver.c drivers/BME280_driver.c \

 drivers/ADXL375_driver.c drivers/LSM6DS3_driver.c

test_routines.c data_buffer.c filters.c \

 orientation_utils.c lqr_controller.c drivers/SERVO_driver.c

kalman_filter.c

build: firmware.bin

firmware.elf: $(SOURCES)

 arm-none-eabi-gcc $(SOURCES) $(CFLAGS) $(LDFLAGS) -o $@

firmware.bin: firmware.elf

 arm-none-eabi-objcopy -O binary $< $@

flash: firmware.bin

 st-flash --reset write $< 0x8000000

dfu: firmware.bin

 STM32_Programmer_CLI -c port=usb1 --download firmware.bin 0x8000000

clean:

 del -rf firmware.*

debug:

 openocd -f ./openocd/scripts/board/st_nucleo_l4.cfg

Figure D.4 Makefile

41

Appendix E – Database structure

Figure E. 1 Database structure

42

Appendix F – MATLAB Input Format Equations

Equation (1) estimates the altitude based on the atmospheric pressure measured at a

given height compared to the sea level pressure. 0.19 approximates the change in

pressure with altitude under a standard atmosphere.

ℎ = 44330 ∗ (1 − (
𝑝

1013.25
)

0.19

) (1)

Equation (2) updates the vertical velocity of the rocket by adding the change in velocity

due to acceleration over a small time interval, Δ𝑡. The constant 0.00980655 converts

acceleration from the standard gravitational unit 𝑔 to 𝑚/𝑠2, aligning with the standard

unit of velocity in meters per second.

𝑣 = 𝑣 + 𝑎 ∗ 0.00980655 ∗ ∆𝑡 (2)

Equation (3) calculates the mass decrease of a rocket over time as it burns propellant.

The initial and propellant mass are divided by the burnt time, 𝑡.

𝑚 = 𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙 −
𝑚𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡

𝑡
 (3)

The longitudinal moment of inertia, 𝐼, of the rocket can be calculated using the

Equation (4), where 𝐼𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 is the moment of inertia of the remaining propellant and

𝐼𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 is the moment of inertia of the structural mass (excluding propellant).

𝐼𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 = 𝐼𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 + 𝐼𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 (4)

The moment of inertia for cylindrical bodies, typical rocket shapes, about their

longitudinal axis can be calculated using Equation (5). In here, 𝑚 is the mass of the

cylinder (propellant or structure), 𝑟 is the radius of the cylinder and ℎ is the height.

𝐼𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 =
1

12
 ∗ 𝑚 ∗ (3 ∗ 𝑟2 + ℎ2) (5)

Equation (6) calculates the rotational moment of inertia for a body, assuming a

simplified cylindrical distribution of mass. The radius, 𝑟, indicates how far the mass, 𝑚,

is spread from the rotational axis, and the 0.5 is a coefficient that changes based on

the geometry of the body.

 𝐼𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = 0.5 ∗ 𝑚 ∗ 𝑟 2 (6)

The centre of gravity (CG) for the rocket is calculated based on the amount of

propellant consumed, with an assumption that the CG shift is linearly dependent on

the propellant mass consumed. The change in CG location is given by the Equation

43

(7), where 𝐶𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the initial centre of gravity location and ∆𝐶𝐺 is the shift in the

centre of gravity due to propellant consumption.

𝐶𝐺𝑛𝑒𝑤 = 𝐶𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − ∆𝐶𝐺 (7)

The shift in the centre of gravity (∆𝐶𝐺) can be calculated as Equation (8):

∆𝐶𝐺 =
𝑚𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙
∗

𝐶𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙

2
(8)

The Mach number is the ratio of the object's velocity to the speed of sound in the

surrounding medium. 𝛾 represents the heat capacity ratio of the air, 𝑅 is the specific

gas constant for air, and 𝑇 is the ambient temperature. This equation is used to

determine how supersonic the object's movement is relative to the speed of sound at

a given temperature and atmospheric condition.

𝑚𝑎𝑐ℎ =
𝑣

√γ ∗ 𝑅 ∗ 𝑇
 (9)

44

Appendix G – CPP

45

46

47

48

49

50

51

52

53

54

55

56

Appendix H – Meeting logs

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

	List of Figures
	Nomenclature
	Abstract
	Chapter 1. Introduction
	1.1 Introduction
	1.2 Individual Project Aim
	1.3 Individual Project Objectives

	Chapter 2. Background and Literature Review
	2.1 Background
	2.2 Literature Review

	Chapter 3. Firmware Development
	3.1 Introduction
	3.2 Firmware Setup
	3.3 Flashing Methodology
	3.4 Firmware Development
	3.5 Firmware Testing

	Chapter 4. Data Processing and Storage
	4.1 Introduction
	4.2 Data Storage Comparison
	4.3 Data Storage Architecture

	Chapter 5. Data visualisation
	5.1 Introduction
	5.2 Backend Framework Selection
	5.3 Framework Development
	5.4 LURA Dash Features

	Chapter 6. Pipeline Integration
	6.1 Introduction
	6.2 Pipeline Discussion and Results
	6.2.1 Pipeline Throughput
	6.2.2 Storage Capabilities
	6.2.3 Cloud Hosting Implications
	6.2.4 Adaptability

	Chapter 7. Conclusion and Future Work
	7.1 Achievements
	7.2 Conclusion
	7.3 Future Work

	References
	Appendix A – Firmware Flowchart
	Appendix B – Dashboard GitHub README file
	Appendix C – Controller Transition from MATLAB to C
	Appendix D – Firmware Setup
	Appendix E – Database structure
	Appendix F – MATLAB Input Format Equations
	Appendix G – CPP
	Appendix H – Meeting logs

