End-to-End Data Pipeline to improve a Vertical
Orientation System for a Sounding Rocket

MECH5080M Team Project — Individual
Report

End-to-End Data Pipeline Architecture to
improve a Sounding Rocket Stability
Control

Author: Alexandra Posta 201318973
Supervisor: Dr Jongrae Kim

Industrial Mentor: Theo Gwynn
Examiner: Dr Jongrae Kim, Professor
Robert Kay

Date: 30/04/2024

SCHOOL OF MECHANICAL ENGINEERING Fl
UNIVERSITY OF LEEDS

MECHS5080M TEAM PROJECT 60 credits

TITLE OF PROJECT

End-to-End Data Pipeline to improve a Vertical Orientation System for a
Sounding Rocket

PRESENTED BY Alexandra Posta

OBJECTIVES OF PROJECT

The project's aim is to aid the VOS of sounding rockets through the development and
integration of a software-firmware system. This system incorporates the active control

of canards and advanced data management tools to support continuous improvement.

IF THE PROJECT IS INDUSTRIALLY LINKED TICK THIS BOX X
AND PROVIDE DETAILS BELOW

COMPANY NAME AND ADDRESS:

Airbus Defence and Space
Gunnels Wood Rd, Stevenage SG1 2AS

INDUSTRIAL MENTOR:

Theo Gwynn

THIS PROJECT REPORT PRESENTS OUR OWN WORK AND DOES NOT
CONTAIN ANY UNACKNOWLEDGED WORK FROM ANY OTHER SOURCES.

SIGNED hs ﬁ\mﬁ DATE 30/04/2024

Contents

LiSt Of FIQUIES ... v
NOMENCIATUIE ... e e e e e et e e e e e e e eeeeenes Vi
ADSIIACT ... e eeaaee vii
Chapter 1. IntrodUCtionoooiriii e 1
1.1 INErOAUCTION .. 1
1.2 Individual ProjeCt AiM.......coooiiiiiiee e 1
1.3 Individual Project ObjJectivescccooiiiiiiiiiiiiiiieeeeeeecec e 1
Chapter 2. Background and Literature Reviewccccccoeeeiiiiiiiiiiiiiiinnnnnn. 2
21 Backgroundcoooiiiiiiiiiiiiiiiiiiiiiiee e 2
2.2 Literature REVIEWoovviiiiii e 2
Chapter 3. Firmware Development............oooouiiiiiiiiiieei e, 4
3.1] (oo 18 o i o PP 4
3.2 Firmware SetUpccoooriiiii i 4
3.3 Flashing Methodologyccooeuiiiiiiiii e, 4
3.4 Firmware Development ..o, 5
3.5 Firmware TeStiNg.......ccooouiiiiiiiiii e 8
Chapter 4. Data Processing and Storagecceevevveviiiiiiiiiiiiiiiiiiieiiiieeee, 9
4.1] (oo 18 o i o ISP 9
4.2 Data Storage CompariSONcoouiiiiiiiiiiiee e 9
4.3 Data Storage ArchiteCture ... 9
Chapter 5. Data visualisation................ccoooviiiiiiiiii e, 10
5.1 INErOAUCTION ..o 10
5.2 Backend Framework Selection...........ccccocoiiiiiiiiis 10
5.3 Framework Development ... 10
54 LURADash Features ... 11
Chapter 6. Pipeline Integrationccooviiiiiiiiiiee e 13
6.1 INErOAUCHION ..o 13
6.2 Pipeline Discussion and ReSUISccooeviiviiiiiiiiiiiiieeeeeeee, 13
6.2.1 Pipeline Throughputcoooii i 13
6.2.2 Storage Capabilitiescccooiiiiii s 14
6.2.3 Cloud Hosting Implications...........cccccooiii s 14
6.2.4 Adaptability.......ccccooiii e 14
Chapter 7. Conclusion and Future WOork...........cccooooviiiiiiciinieen, 15

il

71 ACHIEYEMENES ..o e, 15

472 O o [ox 1111 o o [PPSR 15

7.3 FULUIE WOIK ..o e 15
REFErENCES ... 16
Appendix A — Firmware Flowchart............cccooiiiiiiii e, 19
Appendix B — Dashboard GitHub README file.........cccooooiiiiiiiiiiiiiieeeee, 20
Appendix C — Controller Transition from MATLABto C.........coovvvieiiiiiininnnn, 22
Appendix D — Firmware Setup..........ooeeuuiiiiiiieieeeeee e 36
Appendix E — Database Structurecccoooee i 41
Appendix F — MATLAB Input Format Equations..............ccccoeeeviiiiiiiii e, 42
APPENAIX G = CPP .. 44
Appendix H — Meeting 10gS........ooiiiiiiiiiiie e 56

v

List of Figures

Figure 2.1 Data Pipeline OVErviewccccvviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee 2
Figure 3.1 Flashing procedure for the custom Aptos PCB via a Nucleo-144...5

Figure 3.2 Simplified Firmware Flow Diagram (extensive diagram in Appendix

A 6
Figure 5.1 Main LURA Dash tab, data is displayed from the active controlled
TSt iGNt .. 12
Figure 5.2 Pages on LURA Dash: the import of a new flight in the database (left)
.. 12
Figure 6.1 System Integration............ooooviiiiiiiie 13
Figure A.1 Detailed Firmware Flow Diagram........ccccccccviviiiiiiiiiiiiiiiiiiiiennnne. 19
Figure C.1 Source code for orientation_utils.hcccciii . 23
Figure C.2 Source code for orientation_utils.C............ccccoooiiiiiiiiiiiin, 29
Figure C.3 Source code for Igr_controller.h..........cccccooiiiiiiiiiiiiieeeeeeee 31
Figure C.4 Source code for orientation_utilS.C..........ccooveviiiiiiiiiiiiiiiiiiiiiiinnnne. 35
Figure D.1 Startup file.......oveeeiiieeeee e 36
Figure D.2 System CallS........coooiiiiiiieee e 38
Figure D.3 Linker Filecooooiiiiiiiieeeeeeeeeeeee 39
Figure D.4 MaKefileoooviiiiiiiiiie 40
Figure E.1 Database StruCture.............cooooviiiiiiiie e 41

Nomenclature

AP
COTS
ELT
GPIO
HIL
HTTP
IDE
LQR
LURA
ORM
PCB
REST
saL
SWD
SPI
UART
UK
UKRA
USB
VOS

Application Programming Interface
Commercial-Off-The-Shelf

Extract Load Transform

General Purpose Input/Output
Hardware-in-the-loop

Hypertext Transfer Protocol

Integrated Development Environment
Linear—quadratic regulator

Leeds University Rocketry Association
Object-Relational Mapping

Printed Circuit Board
Representational State Transfer
Structured Query Language

Serial Wire Debug

Serial Peripheral Interface

Universal Asynchronous Receiver/Transmitter
United Kingdom

United Kingdom Rocketry Association
Universal serial bus

Vertical Orientation Systems

Vi

Abstract

This thesis presents the development of a data pipeline designed to aid the active
vertical stabilisation system of a sounding rocket. The primary objective was to create
a robust architecture that connects firmware and software components necessary for
flight control operations of Aptos, a module that contains a secondary set of fins

actuated individually to stabilise trajectory.

The project involved the development of a flight firmware in bare metal C, setting up a
development environment that includes the main loop routine, helper functions, and a
controller initially modelled in MATLAB and Simulink. Furthermore, methods for storing
and visualising flight data were established and tested to support the pipeline. The
system's performance was ultimately tested during a rocket launch campaign, where
hardware was mounted to a sounding rocket and operated under active control. Data
was successfully collected during flight, ingested in a centralised database storage unit

and visualise for further controller gain tuning.

The projects confirms that a well-integrated data pipeline is beneficial for the
advancement and refinement of aerospace technologies, particularly in the

development of flight controllers for sounding rockets.

vii

Chapter 1. Introduction

1.1 Introduction

Sounding rockets serve as pivotal instruments for atmospheric research and suborbital
experiments. The flight trajectory of a rocket can be affected by external factors such
as winds which lead to uncontrolled dispersion and lower apogees [1]. To minimise the
effects of external factors and improve the flight trajectory, active vertical controllers
can be used. This report presents the development of an end-to-end data pipeline
meant to facilitate the active stabilisation of rockets. It focuses on the application of
Vertical Orientation Systems (VOS) which computes the desired orientation of the

rocket by controlling a secondary set of fins known as canards [2], [3], [4].

The end-to-end data pipeline is enabled through various coding platforms integration.
It merges low-level firmware, which manages the actuation of the canards, with high-
level software algorithms that process data streams, analyse flight dynamics, and
execute stabilisation strategies. The following chapters outline the pipeline
components: firmware development, centralised database, and data visualisation.
Chapter 2 introduces the concepts, Chapters 3 to 5 detail each component, and

Chapter 6 discusses system integration, followed by conclusions and future work.

The report presents a system where firmware and software are integrated elements of
a single, robust architecture. This perspective is beneficial for the successful
deployment and improvement of the VOS controller. Such an approach furthers the
field of aerospace engineering and proposes a unified system that is not widely

available or standardised in the industry.

1.2 Individual Project Aim

The project's aim is to aid the VOS of sounding rockets through the development and
integration of a software-firmware system. This system incorporates the active control

of canards and advanced data management tools to support continuous improvement.

1.3 Individual Project Objectives

o To complete the firmware development and convert the high level MATLAB
Simulink controller into bare metal C code.

e To develop a visualisation and storage tool that aids controller refinement by
allowing users to make informed decisions after analysing flight data.

¢ To integrate the previously defined subsystems into a coherent data pipeline that

streamlines the development of the VOS flight controller.

Chapter 2. Background and Literature Review

21 Background

The active control module, namely Aptos, utilises four independently actuated servos
and fins (canards) situated in the midsection of the sounding rocket. The rocket is
vertically stabilised by the fins’ deflection’s that generate steering moments. Now in its
second year of development, the focus has shifted towards an overhaul of the
firmware, software, and hardware required to operate the controller. This year's work
builds upon the previous year's foundational work [5], [6], during which two launches
were conducted without the control activated. This happened due to insufficient testing
and hardware reliability concerns. As a result, the work presented in this report aims

to streamline the development process of the controller and enhance its safety.

The concept of data pipeline, in computing, refers to a structured series of nodes,
where the output of one node is the input of the next [7]. Data pipelines are designed
to improve the flow of data from the source to the destination by automating the
process and thereby reducing the requirement for manual involvement. Data pipelines
can come in two different forms: Extract-Load-Transform (ELT) or Extract-Transform-
Load (ETL) [8]. In this context, as illustrated in Figure 2.1, an ELT system was
developed to use the computational resources available on the ground rather than
processing data during flight. Data is extracted from the onboard computer post-flight,
including atmospheric readings and controller metrics, which are then captured and
stored locally on a NOT-AND (NAND) Flash memory unit. After the extraction step,
data is loaded on a centralised database from where it can be visualised and
postprocessed. To improve the controller further, data can be transformed in a format
that is compatible with the input to the MATLAB/Simulink controller simulations. By

doing this, the gain tuning can be performed using real-flight data.

Extract Data off Load Data into a
\ Transform Data
the on-board ' centralised > and export
NAND Flash storage unit P

Figure 2.1 Data Pipeline Overview

2.2 Literature Review

In rocketry applications, there is a variety of technologies employed for data pipelines
across teams and projects. An overview was conducted to analyse how individual
teams have selected methodologies and components in their data architectures. This
analysis creates a broader understanding of the existing solutions within the field of

aerospace engineering, specifically low cost sounding rocketry.

In sounding rocket projects, Arduinos and Teensy are utilised frequently as the flight
computer processing unit. A flight computer processing unit is a device that controls
the aerospace vehicles, processing data from onboard sensors. These pre-made
boards contain all of the circuitry needed for the processor unit and can be paired with
premade breakout sensor boards. The use of these systems has been identified in
various projects such as the Helen project [9] and the Gryphon | rocket launched by
the Leeds University Rocketry Association (LURA) [10]. These boards are favoured for
their ease of prototyping, although they often face limitations in flexibility due to
predefined libraries and have high costs. Additionally, many groups, such as Ohio’s
University Rocketry team [11], avoid the use of their own flight hardware and rely on
the readings from Commercial-Off-The-Shelf (COTS) flight computers such as the

Altus Metrum Series [12], restricting their capabilities further.

For more complex applications, other rocketry teams have adopted more powerful
microcontrollers such as the NXP chips, GD32 and ARM-based platforms like the
STM32, such as [13] and [14], which required more advanced C programming. These
alternatives provide greater flexibility at the cost of increased complexity. Despite the
complexity, a lower level understanding of the system helps with debugging. For
example, the launch vehicle TEXUS/MAXUS [15] integrated five different on-board

experiments that had a custom built data collection system.

In the context of data storage for sounding rocketry teams, there is no standardised
database system in place, nor are there centralised records of sounding rocket
launches at the United Kingdom (UK) national level. The UK Rocketry Association
(UKRA) is recognised as the primary information source for rocketry in the UK.
Although there has been an initiative to establish a database for amateur rocketry
teams [16], the necessary infrastructure is yet to be implemented. The absence of a
unified system has shifted the focus of the review towards general purpose, lightweight

and intuitive database platforms. Database options are detailed in Section 4.2.

In terms of rocket flight visualisation, there seems to be no publicly available dashboard
technology specifically developed by university rocketry teams. However, individuals
and independent groups have developed dashboards by analysing flight data from
commercial aerospace companies such as SpaceX [17], [18]. These dashboards
contain widgets that display general information about the launch vehicle and some
telemetry information about the flight stages timings. Additionally, smaller groups have
released dashboards tailored for real-time testing of the sensors on flight hardware
[19]. These platforms enable users to connect physical boards directly to a device,

extract sensor information and display readings via the web interface dashboard.

Chapter 3. Firmware Development

3.1 Introduction

Firmware is specialised software that is embedded in the non-volatile memory of a
hardware device. The hardware platform used is a custom Printed Circuit Board (PCB)
that is controlled by a STM32L4R5ZI-P microcontroller (MCU). An STM32 refers to a
family of 32-bit MCUs integrated circuits by STMicroelectronics. The peripherals, any
external component connected to the MCU, and internals, any registers that are
directly inside of the processor unit, were set manually using custom C drivers and
setup files. The setup process is described in the subsequent sections and the

codebase is available publicly on GitHub [20].

C has emerged as the most appropriate programming language, as it is versatile,
performant and portable. A custom bare metal system was developed, where firmware
operates directly on hardware without an intermediate operating system (OS). This
setup allows for more control over hardware resources, which is ideal in real-time

applications, such as a flight computer that runs on an STM32 embedded platform.

3.2 Firmware Setup

The firmware was developed inside the Visual Studio Code Integrated Development
Environment (VS Code IDE), a tool that can support C code and direct interaction with

hardware for debugging purposes through the inspection of memory addresses.

In the context of bare metal development, a series of configurations are needed for the
compilation of the firmware on to the target MCU [21]. The high level steps include the
setup of memory and registers addresses, the configuration of the interrupt vector table
for error handling and the creation of startup code that initialises the memory stack.
Additionally, a linker script is required to define the memory layout of the application.
Internal configurations such as General Purpose Input/Output (GPIO), system ticks for
timekeeping or Universal Asynchronous Receiver/Transmitter (UART) for serial
communication are defined. Furthermore, to facilitate debugging and output, print
statements are redirected to UART. Appendix D should be checked for a more detailed

explanation of the firmware setup.

3.3 Flashing Methodology

The hardware setup involves powering the board either through a 7.4V battery or a
Universal Serial Bus (USB) connection. A Nucleo-144 board, which incorporates an

ST-LINK/V2 in-circuit debugger/programmer, is employed to upload the compiled code

(flashing). Flashing involves writing the compiled code to the non-volatile memory of
the MCU, which allows the program to be stored permanently, even when the device
is turned off or restarted. The connection between the flight computer and the Nucleo
board is established via a 4-pin Serial Wire Debug (SWD) header. Since the ST-Link
interface does not support output display from the MCU, an additional serial connection
is needed. The UART1 pins are exposed on the PCB and connected to a serial
interface linked to the computer via USB. Data output is monitored through a PuTTY
terminal session which facilitates the debugging of the programmed firmware. The

hardware setup can be visualised in Figure 3.1.

USE to computer for powering

I iu

~SWD Header‘w - i:

PUTTY terminal
for data visualisation

Figure 3.1 Flashing procedure for the custom Aptos PCB via a Nucleo-144

A procedure was put into place to flash code on the flight computer MCU. Firstly, the
development environment was configured as described in the Appendix B. Then, the
firmware was compiled into executable code by navigating to the code repository in a

terminal and running the make flash command.

3.4 Firmware Development

The firmware development involved a collaborative effort from various team members,
but the following sections cover the author’'s main areas of focus. The development
cycle was completed through firmware implementation, debugging and testing.

A simplified version of the general firmware loop can be viewed in Figure 3.2. For a
detailed view, refer to Appendix A. The code configured the STM32 MCU and initialised
the communications with onboard sensors using Serial Peripheral Interface (SPI) and
UART communication. This included the initialisation of drivers for the barometer

sensor, accelerometer, Inertia Measurement Unit (IMU), and the NAND Flash memory.

Launchpad Ascend Descend Landing
/-St;x-\ Perform senser reading sequence Perform sensor reading sequence $| Record stage onto the NAND Flash ‘
and log data to NAND Flash and log data to NAND Flash
(1000 Hz) (100 Hz)
| Initialise STM32 MCU | i | Set Servos deflections to 0 degrees ‘
¢ Perform LQR control using ¢
- . ; Gyroscope data and set deflections Set Servos deflections to 0 degrees | o
| Initialise Sensors and Orientation | to Servos Eies
i —
Check for lift off using the Barometer Check for Apogee using the Check for landing using the
and Acceleration readings Barometer readings Barometer and Gyroscope readings

Figure 3.2 Simplified Firmware Flow Diagram (extensive diagram in Appendix A)

The flight computer captured sensor readings at frequencies that varied according to
different flight phases, as listed above. During the ascend, the system recorded at a
high frequency of up to 1000 Hz to ensure a comprehensive capture of the rocket’s
performance under maximum dynamic stress and rapid environmental changes, which
are most pronounced during this phase. For the descent and landing phases, where
changes are more gradual, the recording frequency was reduced to 100 Hz, optimising

data storage without compromising the quality of the information gathered.

Data from sensors was stored in a circular buffer, designed to hold up to 50 readings,
which helped to reduce noise by calculating median values and applying sensor fusion
techniques for more accurate state determination. The custom-developed firmware
used the buffer to record data at the moment of take-off. In contrast, most COTS [12]
systems commence recording post take-off, thus missing several initial readings. The

system was designed to capture the early stages of flight.

Custom functions were implemented to detect lift-off through altitude offsets and
acceleration triggers, to calculate vertical velocity from pressure, and identify landing
by low gyroscope standard deviation and predefined ground pressure threshold levels.
The use of multiple sensor readings for a single flight stage transition ensured that the

system could respond appropriately to dynamic conditions throughout the flight.

The existing LQR (Linear-Quadratic Regulator) controller and servo mechanisms were
integrated to adjust the vehicle's flight controls based on processed sensor data. Data
from sensors and control outputs were compiled into a structured format (FrameArray),

timestamped, and logged into NAND flash storage for retrieval and analysis.

The control algorithm, originally developed in MATLAB and Simulink, was translated
into C and embedded onto the firmware. The LQR sourced from the previous year
controller [5] and firmware [6], were used as guidance. Further steps were taken to
improve the controller's execution speed, by removing unnecessary loops, replacing
memory draining variables with pass-by-reference pointers, unrolling loops to process
multiple values simultaneously. The primary sensor for the LQR, the gyroscope, was
initialized at various rates to determine the system's minimum operational frequency.
Through trial and error, it was found out that the rates would have a stable output above

100 Hz. Detailed explanations of the controller logic can be found in Appendix C.

Data from the IMU sensor, which includes a three-axis gyroscope and accelerometer,
determines the orientation of the launch vehicle. Raw gyroscope data, expressed as
Euler angles (roll, pitch, and yaw), risks gimbal lock—a condition causing loss of one
degree of freedom. To avoid the this, gyroscope data was converted into Quaternions,
represented as four scalar values: qw (the real part) and gx, qy, gz (the imaginary part),
[22]. The vehicle orientation was updated in quaternion format. The state is then
converted back into Euler angles as input into controller. This conversion is needed
because the controller is designed around Euler angles. Figure 3.3 was created to aid

the visualisation of the canards expected deflection when motion is applied.

Figure 3.3 Canard Expected Deflection during yaw (left), roll (centre) and pitch (right)

To correctly determine servo deflections from the
controller, the gyroscope data must be mapped to
their corresponding gains. Due to an alignment
discrepancy between the IMU output and the
controller's expected input, an axis conversion was
implemented, as outlined in Figure 3.4. The
controller was configured for a left-hand
coordinate system, contrasting with the right-hand

coordinate data output from the IMU gyroscope. _
Figure 3.4 Coordinate System before

Moreover, due to the vertical orientation of the correction (left) and after correction

board, the roll and pitch axis were reverted. (right)

3.5 Firmware Testing
Each sensor custom driver functionality was evaluated through a unit testing

procedure, where individual drivers were isolated to retrieve data. For more advanced
drivers, such as those handling orientation, testing was conducted with a mobile phone
application named Sensor Logger, which calculates the phone's position using Euler
and Quaternions [23]. To validate the conversion process, the board was physically
attached to the mobile phone and moved along the roll, pitch, and yaw axes, as shown
in the Figure 3.5. The Quaternions calculated using the Aptos firmware closely follow

the readings from the mobile app, confirming the accuracy of the orientation.

0.6 { — Aptosqw
——- Refqw

0.4 1

0.2

Orientation w (rad/s)
Orientation x (rad/s)

— Aptos gx
—=- Refqgx

0.0 1

T T T T T T T T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (s) Time (s)

’ L N R R PO A A N A (N [N SRS R
0.0 - Dt 0.0 -

Orientation y (rad/s)
Orientation z (rad/s)

| — Aptos qy 34 — Aptos gz
—=- Refqy —=- Refqz

T T T T T T T T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (s) Time (s)

Figure 3.5 Comparison between Sensor Logger Quaternions and flight computer Quaternions

The main loop firmware testing involved placing the flight computer inside a vacuum
chamber to simulate flight conditions. The chamber's air pressure was reduced to -
0.6bar at the highest pump rate to emulate the atmospheric conditions encountered
during flight. Despite the limited pump rates, the results confirmed that the barometer's

calculations were accurate to determine the transitions between flight stages.

The flight test for the Aptos module took place on April 14, 2024,
during which the system was successfully launched with active
control enabled. The board correctly transitioned through the flight
stages, and notable oscillations were observed, which were
attributed to the control’'s corrective actions. However, the test
revealed a flaw in the NAND flash routine, as servo four data was
missing. This happened because the memory address of servo four
was overwritten, by mistake, by the bits used for data correction.
Additionally, while the servo outputs were intentionally limited to £15
degrees for safety reasons, the data logged was the capped value

Figure 3.6 Aptos‘
rather than the actual angle produced by the controller. Flight

Chapter 4. Data Processing and Storage

41 Introduction

The subsequent phase in the pipeline evolves the storage of the collected data. A
database serves as a structured platform for storing, retrieving, and managing data,
enabling access and manipulation of flight information. The aim is to create a

centralised flight record system that will serve as a long-term repository for flight data.

4.2 Data Storage Comparison

The database requirements focus on collection, storage, retrieval, accessibility, and
integration [24]. The database must accommodate numerical, text, and time data
types, all within a modular framework to facilitate future expansion. For data retrieval,
the system requires quick search capabilities, as it is meant to manage multiple
concurrent queries when flight data is requested by users. Various database platforms
were evaluated such as MySQL, PostgreSQL, which offers robust security [25],
MongoDB, which allows for flexible data structures, and InfluxDB, which specialises in
time series data [26]. MySQL stands out for its widespread adoption, high storage
capacity, and intuitive interface. The ease of setting up and managing MySQL, coupled

with its familiar relational database environment, swayed the decision in its favour.

4.3 Data Storage Architecture

A local MySQL instance named "aptosdb" was created, along with its structure,
designed to organise information into subject-based tables. The database operated on

a local system, meaning it stores and manages data on the device where it is installed.

Appendix E outlines the database structure, which mirrored the master structure used
in the firmware for managing data on the NAND Flash. In MySQL, a table is a
structured format to store data in rows and columns, where each column holds a type
and each row corresponds to a record. The database features three tables linked by a
one-to-many relationship, meaning a single record from one table (primary table,
"flight") can be associated with multiple records in the other tables ("flight data" and
"control_command") via a unique key. The primary table, "flight", stored general
information. Meanwhile, "flight_data" included the sensor readings and
"control_command" recorded controller information, specifically servo deflection
angles. The two tables include timestamps and default values for all entries to avoid
errors with potential undefined raw entries. MySQL provides an interactive terminal

that was used to document and prepared the scripts needed in the following phase.

Chapter 5. Data visualisation

5.1 Introduction

A web-based application, the user-facing component of the system, was developed to
facilitate intuitive data visualisation from the databases. This tool promotes more
informed decision-makings and facilitates the identification of trends and anomalies

within the dataset.

For this component of the pipeline, a new web application was developed, called
“‘LURA Dash”. The following sections detail the backend and frontend components.
The backend is tasked with the application’s logic and data processing, while the

frontend focuses on user interaction and visual integration.

5.2 Backend Framework Selection

The following requirements were selected: simplicity, to accommodate members with
less web-based experience; flexibility, to keep the tool computationally lightweight
without heavy dependencies; and extensibility, to allow for future features such as user
authentication. A Python-based framework was selected to leverage its widespread
popularity and ease of integration with MySQL databases. The ideal framework should

have a solid foundation of user guides and resources to address common issues.

Flask, a Python based web framework, was chosen for its Representational State
Transfer (RESTful) request handling, built-in development server, and integrated
debugger that aids error correction [27]. Compared to alternative frameworks —
Django's complexity, CherryPy's inadequate documentation, and Bottle's limited
community [28] — Flask stands out as the most pragmatic choice. Its strong
community support and comprehensive documentation ensure a smooth development

process, making it an accessible and powerful tool for developers of all skill levels.

5.3 Framework Development

Flask served as the backbone of “LURA Dash”. It facilitated the creation and
management of RESTful API (Application Program Interface) endpoints. A RESTful
APl is an architectural style for an API that uses Hypertext Transfer Protocol (HTTP)
requests to access and use data [29]. These endpoints were defined to handle specific
functionalities such as data retrieval, data storage, and dynamic content delivery. Each
endpoint was mapped to a Python function, making it straightforward to implement
logic that interacted directly with the backend database. The API was designed with a

clear structure where each route was associated with HTTP methods that defined

10

client interactions with the server. For instance, GET requests fetched data and POST

requests submitted new data. Table 5.1 lists the endpoints that can be accessed.
Table 5.1 Web Endpoints

Endpoint Method Description Response
. . , Returns a list of all flights JSON with a list of flights
/get-flights GET from the database
‘Iget-flight- GET Returns detailed flight data JSON with flight details and
data’ based on the flight ID associated flight data
‘/get-db- Lists all database tables JSON with a list of database
) GET
tables tables
‘/get-db- Lists all columns for a JSON with column details of
, GET i e
columns specified table. a specified table.
‘Iget-db- Retrieves data for a specified | JSON with data from the
, GET . e .
column-data column in a specified table specified column
‘/get-db-table- GET Retrieves all or filtered data JSON with data from the
data’ from a specified table specified table
‘Jupload’ POST §tores uploaded flight data Confirmation message of
into the database data storage
e , GET Serves the main page of the HTML of the main page
flight-data POST | web application
) , GET Serves the database page of | HTML of the database page
/database POST | the web app
‘add-data’ GET Serves the data ingestion HTML of the data ingestion
POST | page of the web app page

Jexport-data’ GET Serves the data extraction HTML of the data extraction

P POST | page and handles data export | page of exported CSV file

To manage database interactions, SQL Alchemy was used as the Object-Relational
Mapping (ORM) tool. The ORM facilitates the communication between the application
and the database by using high-level entities such as classes, which mirror the tables
in the database [27]. Models in SQL Alchemy defined the structure of the database,

which simplified tasks like querying the database and manipulating data entries.

For the frontend, Vanilla JavaScript was used to make the application lightweight. This
choice avoided the overhead associated with larger frameworks. JavaScript interfaced
with the Flask backend via AJAX calls, fetching and posting data asynchronously to

provide an uninterrupted user experience without the need for page reloads.

5.4 LURA Dash Features

“‘LURA Dash” offered multiple pages that enabled users to interact with data in various
formats. The main tab, illustrated in Figure 5.1, allowed users to select a flight and
display it on the screen. The interface featured widgets including an altitude versus
time graph, vertical velocity and acceleration, and a flight path representation based
on sensor fusion, along with other statistics. The "Run from Beginning" button played

an entire flight. Users could stop at any point to examine a particular moment in time.

11

Launch Vehicle Altitude vs Time Ideal vs Actual flight

——_ Prosurs iy Tempsraue
T = ' 1020.19 mBar 0g.m-3 20.24°C
\‘ GNSS Saslies Vertical Velacity Acesleration

T 0 -46.785 m/s 0.091

C e e P - o,
. - 4 ov None

Flight Stage

Satellite view

Figure 5.1 Main LURA Dash tab, data is displayed from the active controlled test flight
LURA Dash included tabs for easy handling of CSV-formatted data from the flight

computer. Users could upload the flight data into the database using the tool shown
on the left. Once visualised and validated, any flight data could be formatted in the

appropriate form for the input of the gain tunning in MATLAB using the tool on the right.

{
q’ Launch Data Entry

Rocket Name
Wotor

Date of Launch:

Time of Launch:
Location:
Wind Speed
Wind Direction
Initial Mass
CG Location:
CP Location

Active Control

—Select table in database—
Pathfinder-J570W-14A-Sun, 14 Apr 2024 00:00:00 GMT

AN

" --Select table in database-- v || Export to CSV

@ %
y

L (]
T+ m

Raw Data:

Comments:

Data Source: |NAND Flash

Upload CSV Data: | Choose file | No file chosen

| Submit Data |

Figure 5.2 Pages on LURA Dash: the import of a new flight in the database (left)
and the export of a flight into a MATLAB controller input format (right)

The raw flight data did not match the input format used for the controller gain tuning.
The following parameters—altitude, vertical velocity, mass, longitudinal moment of
inertia, rotational moment of inertia, centre of gravity location and Mach number—were
derived from the raw values as the equations shown in Appendix F. After conversion,
the data was compiled into a CSV file. This file could then be integrated into MATLAB,
to enable the tuning of the controller with real-world data—a significant enhancement

from the previous reliance on simulated data alone.

12

Chapter 6. Pipeline Integration

6.1 Introduction

The final phase of the project was
marked by the integration of all

[1
. . CSV o
components into a cohesive data Data 'V"i MATLAB
. . . storage I i I Control Format
pipeline. This process was used

Software Web interface

to validate the system's Defﬁeﬁa&? Dashboard Smi:;‘imdel
. in MATT /
performance against the I |
anticipated outcome from the Receiver CSVin Flight | | Get new gains
Format array

MATLAB simulation and maintain |

Set the terminal to
e Update oo
S output all logged ...
data to CSV

Firmware

compatibility between stages.

The architecture is illustrated in

. . Transceiver PuTTY Serial
Figure 6.1, which demonstrates Terminal
x T
i SPI UART
the data flow, starting from e
. [Flight Firmware|
collection and storage, followed and Hardware

by its conversion in various
formats, which enables transition Figure 6.1 System Integration

among distinct subsystems.

The effectiveness of the integration was tested following a flight campaign. Data was
extracted from the flight computer using PuTTY’s serial terminal interface and then
converted to CSV format. The dashboard required users to enter details such as the
rocket's name, engine type, date, time and wind conditions. Following data
visualisation, the information was then exported in a modified CSV format suitable for
recalibrating the MATLAB model's gains. The pipeline eliminated the need for any

custom scripts or additional steps for data conversion.
6.2 Pipeline Discussion and Results

6.2.1 Pipeline Throughput

In the post-flight evaluation, the data pipeline's throughput was quantified at
approximately 0.622 MB per minute, which includes the duration of data retrieval from
the flight hardware to its eventual ingestion into the database. The primary constraint
was the NAND Flash's read speed, which currently outputs approximately 88 readings
per second. At 100Hz, the total test flight yielded 6557 readings, which translates to
74.098 seconds dedicated solely to data extraction. An additional source in processing

time is attributed to the manual transfer of the CSV file from the flight hardware. It was

13

deemed appropriate for the following firmware iteration to have a more optimised
reading routine for the NAND Flash to reduce the time footprint of the data extraction

process and, by extension, the overall efficiency of the pipeline.

When the flight results were ingested into the database via the dashboard, the system
required 6.227 seconds. To assess scalability, the system was subjected to a
simulated data increase by a factor of ten, 65570 entries corresponding to about
12.418 hours of flight. The findings revealed a linear performance, with only a nominal

increase in the database ingestion period to 58.263 seconds.

6.2.2 Storage Capabilities

During the test launch, the data acquisition system used 2416 Kb of storage, with the
data collection process spanning 74.092 seconds. Given the small storage
requirements, it is anticipated that the database can accommodate data from multiple
future flights, even with substantial increases in data acquisition rates. For instance,
elevating the main loop frequency from 1000Hz to 3000Hz, or extended flight durations
due to factors such as wind drift or premature deployment of the main parachute, would

likely not inflate the data size beyond 20 Mb for each launch.

6.2.3 Cloud Hosting Implications

This projection aligns with the planned transition to cloud-based storage solutions.
Utilising a service such as Cloud SQL, it is estimated that the cost would remain
economical at approximately $2.57 per month, as indicated by current pricing models
[18]. This calculation is based on a lightweight 50 Gb database instance, operational
24 hours a day, tailored to the team’s needs that do not require constant database
access. As an alternative, leveraging a custom server setup with a Raspberry Pi,
another small single-board computer, could offer a cost-free solution while still fulfilling

the project's data hosting requirements.

6.2.4 Adaptability

Additionally, the pipeline's architecture is adaptable. Modifications to the firmware,
provided they maintain standard readings—barometric pressure, acceleration, IMU,
temperature, and GNSS data—do not impact the database or the dashboard interface.
Similarly, updates to the control system are accommodated as long as the input data
derived from flight simulations are consistent. As a result, the core functionality of the
architecture remains unaffected by changes in hardware or software. The pipeline is

inheritably flexible and can evolve with the project’s requirements.

14

Chapter 7. Conclusion and Future Work

71 Achievements

The project met all its objectives, contributing to the development of an active
stabilisation system for sounding rockets. Firstly, the flight firmware that supports an
active controller was developed in C, bare metal. The setup included the main routine,
helper functions, and controller logic initially created in MATLAB. Methods for storing
and visualising flight data were also developed and tested. These components were
successfully integrated into a data pipeline that streamlines the development and

refinement of a sounding rocket VOS stabilisation system.

7.2 Conclusion

This report details the design and implementation of a data pipeline integral to a rocket
flight controller application, which bridges firmware and software components. This
system handled the data demands associated with a rocket launch and multiple
additional tests, achieving a throughput of approximately 0.622 MB per minute while

maintaining data integrity.

A significant feature of the project was the incorporation of real-flight data into the
MATLAB-based controller, which aided the analytical capabilities during post-flight
analyses. This allowed for more modifications, as there was a better understanding of

the dataset and a reassurance it is correct as it was real life.

The successful implementation of the data pipelines not only fulfilled the initial project
goals but also laid a solid groundwork for future work in aerospace control systems.
The system was designed to require minimal user intervention, thus optimising the
efficiency of data flow across various components of the pipeline. This is beneficial for

the improvement of the VOS control of sounding rockets equipped with canards.

7.3 Future Work

For future improvements, several steps are recommended to improve the pipeline:

o Data Throughput: A more efficient routine for reading NAND Flash could decrease
data extraction times and increase throughput.

e Dashboard Functionality: New widgets could be added to the dashboard to show
how the canards respond to the orientation of the rocket. This would allow for better
control and understanding of their impact on stabilisation.

¢ Cloud Integration: Moving both the database and the web application to the cloud

would allow team members to access data from any location, not just locally.

15

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

T. Noga, M. Michatow, and G. Ptasinski, “Comparison of dispersion calculation
methods for sounding rockets,” Journal of Space Safety Engineering, vol. 8, Sep.
2021, doi: 10.1016/j.jsse.2021.08.006.

F. Séve, S. Theodoulis, P. Wernert, M. Zasadzinski, and M. Boutayeb, “Flight
Dynamics Modeling of Dual-Spin Guided Projectiles,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 53, no. 4, pp. 1625-1641, Aug. 2017,
doi: 10.1109/TAES.2017.2667820.

S. Chang, Z. Wang, and T. Liu, “Analysis of Spin-Rate Property for Dual-Spin-
Stabilized Projectiles with Canards,” Journal of Spacecraft and Rockets, vol. 51,
no. 3, pp. 958-966, 2014, doi: 10.2514/1.A32830.

S. Chang, D. Li, and W. Wei, “Swerve Solution for Spin-Stabilized Projectiles with
Canards: A Reuvisit,” Journal of Spacecraft and Rockets, vol. 58, no. 5, pp. 1352—
1360, 2021, doi: 10.2514/1.A34964.

T. Youds, “Development Of An Active Control System For A Canard-Controlled
Sounding Rocket,” Leeds: University of Leeds, vol. Masters Thesis, 2023.

B. Cradock, “Design and Development of an Embedded Flight Computer for a
Canard-Controlled Sounding Rocket,” Leeds: University of Leeds, vol. Masters
Thesis, 2023.

M. W. V. Alstyne, G. G. Parker, and S. P. Choudary, “Pipelines, Platforms, and
the New Rules of Strategy”.

A. Raj, J. Bosch, H. H. Olsson, and T. J. Wang, “Modelling Data Pipelines,” in
2020 46th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), Aug. 2020, pp. 13—20. doi:
10.1109/SEAA51224.2020.00014.

V. Nair et al., “Team 116 Project Technical Report for the 2019 IREC”.

[10]“Gryphon I,” LURA. Accessed: Apr. 20, 2024. [Online]. Available:

https://leedsrocketry.co.uk/projects/gryphon-1/

[11]T. Moleski, T. Berger, J. Browne, A. Scott, B. Hesson, and D. Denner, “Project

The Big One Team 23 Technical Report for the 2018 IREC”.

[12]“Altus Metrum.” Accessed: Apr. 20, 2024. [Online]. Available:

https://altusmetrum.org/index.html

[13]N. Christopher et al., “Shark of the Sky Hybrid Rocket”.

[14]“Advanced Control Team — Delft Aerospace Rocket Engineering.” Accessed: Apr.

20, 2024. [Online]. Available: https://dare.tudelft.nl/projects/act/

16

[15]J. Matevska, E. Noack, M. Reinhold, and E. Diekmann, Decentralised Avionics
and Software Architecture for Sounding Rocket Missions. 2020. doi:
10.18420/SE2020_66.

[16]“Team Project Support | UKRA - United Kingdom Rocketry Association.”
Accessed: Apr. 20, 2024. [Online]. Available: http://www.ukra.org.uk/tps

[17]“r-spacex/SpaceX-API.” r/SpaceX, Apr. 28, 2024. Accessed: Apr. 28, 2024.
[Online]. Available: https://github.com/r-spacex/SpaceX-API

[18]“SpaceX Dashboard.” Accessed: Apr. 28, 2024. [Online]. Available:
https://tdunn891.github.io/spacex-dashboard/

[19]“COSMIC AEROSPACE TOWER,” Cosmic Aerospace Technologies. Accessed:
Dec. 28, 2023. [Online]. Available: https://cosmicaero.space/tower

[20]“General - AlexandraPosta/aptos,” GitHub. Accessed: Apr. 28, 2024. [Online].
Available: https://github.com/AlexandraPosta/aptos

[21]1Beginning STM32. Accessed: Apr. 20, 2024. [Online]. Available:
https://link.springer.com/book/10.1007/978-1-4842-3624-6

[22]D. M. Henderson, “Shuttle Program. Euler angles, quaternions, and
transformation matrices working relationships,” Mission Planning and Analysis
Division, 1977, [Online]. Available:
https://ntrs.nasa.gov/api/citations/19770024290/downloads/19770024290.pdf

[23]“Sensor Logger,” Kelvin Choi. Accessed: Apr. 28, 2024. [Online]. Available:
https://www.tszheichoi.com/sensorlogger

[24]A. R. Munappy, J. Bosch, and H. H. Olsson, “Data Pipeline Management in
Practice: Challenges and Opportunities,” in Product-Focused Software Process
Improvement, M. Morisio, M. Torchiano, and A. Jedlitschka, Eds., in Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2020, pp.
168-184. doi: 10.1007/978-3-030-64148-1_11.

[25]M. Abourezq and A. Idrissi, “Database-as-a-Service for Big Data: An Overview,”
jjacsa, vol. 7, no. 1, 2016, doi: 10.14569/IJACSA.2016.070124.

[26]A. Siddiqa, A. Karim, and A. Gani, “Big data storage technologies: a survey,”
Frontiers Inf Technol Electronic Eng, vol. 18, no. 8, pp. 1040-1070, Aug. 2017,
doi: 10.1631/FITEE.1500441.

[27]U. Patkar, P. Singh, H. Panse, S. Bhavsar, and C. Pandey, “PYTHON FOR WEB
DEVELOPMENT,” IJCSMC, vol. 11, no. 4, pp. 36—48, Apr. 2022, doi:
10.47760/ijcsmc.2022.v11i04.006.

[28]A. L. Sayeth Saabith, M. M. M. Fareez, and T. Vinothraj, “Python Current Trend
Applications - An Overview,” IJAERD, vol. 6, no. 10, pp. 6-12, 2019.

17

[29]“What is a REST API? | IBM.” Accessed: Apr. 28, 2024. [Online]. Available:

https://www.ibm.com/topics/rest-apis

18

Appendix A — Firmware Flowchart

Launchpad

Initialisation STM32

Initialise System Clock

Initialise Pins for Peripheral
- LEDs, Buzzer, Servo

Initialise Pins for Internals
- FPU, UART, SPI, power

'

Init Sensor Sequence

—4 Initialise MAND Flash (storage) ‘

——{ Initialise M5611 (Barometer) ‘

——{ Initialise ADXL375 (Accelerometer) ‘

——{ Initiglise LSMBDS3 (IMU) ‘

—4“’“@\83 LQR Controller and Servos ‘

<gSensors initialised correctly’

Liftoff Detection (100 Hz)

Get data for M5611, ADXL375
LSMEDS3, orientation

i

Convert data in FrameArray and
update buffer

i

Get median Barometer reading

i

Prevent Gyroscope drift using
Acceleration data

Yes

Coelerationz= 149

Avionics Firmware Flow

Ascend

iz pressure = 50 mb;

Log latest frames onto NAND Flash ‘

Sensor Recording Sequence
(1000 Hz)

‘ M5611 data (Barometer) |

‘ ADXL375 data (Accelerometer) |

‘ LSMBDS3 data (IMU) |

Get Euler and Quaternion Rates
based on Gyroscope data

i

Convert data to FrameAray and log onto
MAND Flash

1

| Get median Barometer reading ‘

¥

| Calculate vertical velocity ‘

!

LQR Controller (1000 Hz)

| Update LOR gains l_

-b{ Set LOR gains to 0 }7

Perform LQR control by using Euler
Roll, Pitch, Yaw, Roll Rate, Pilch &
Rate and Yaw Rate

v

Get the Servo deflections and cap
them to = 15 degrees

'

Send target deflections to Servos }»

Apogee Detection (1000 Hz)

Check for delta pressure based on w7
the median Barometer readings

No Yes

delta pressure = 50 mbar

Apogee

Perform Sensor Reading Sequence

(1000 Hz)

¥

Convert data to FrameArray and log onto
NAND Flash

)

Set target deflections to Servos to 0
degrees

Repeat three times

Descend

Perform Sensor Reading Sequence
(100 Hz)

)

Convert data to FrameArray and log onto
NAND Flash

¥

| Sat Servos deflections to 0 degrees |

'

| Get median Barometer reading ‘

¥

Landing Detection (100 Hz)

=

Check for delta pressure based on
the median Barometer readings

¥

ICheck Gyroscope standard deviation
of five readings

No

std Gyro is low &
alta pressure < 100 mpa

Landing

Record stage onto the NAND Flash ‘L

!

Set Servos deflections to 0 degrees

Figure A.1 Detailed Firmware Flow Diagram

19

Appendix B — Dashboard GitHub README file

Overview
LURA Dash is a new web interface tool designed by Leeds Universiy Rocketry
Association for visualisation of flight data. It offers multiple pages that enable users to

interact with data in various formats.

The main page features widgets including an altitude versus time graph, vertical
velocity, vertical acceleration, and a flight path representation based on sensor fusion,
along with other statistics. The "Run from Beginning" button plays an entire flight.
Users can stop at any point to examine a particular moment in time. LURA Dash
includes tabs for easy handling of CSV-formatted data from the Aptos flight computer.
Once visualised and validated, any flight data can be formatted in the appropriate form

for the input of our custom controller in MATLAB.

Features
- load flight off the flight computer
- visualise the final outcome of the flight
- play the entire rocket flight and pause as needed
- visualise the data straight from the database; apply filters as needed
- import CSV file with new flight
- export to CSV that is compatible for the comtroller tuning in MATLAB

Structure

The repository is structured as follows:

——custom-card.js # Custon widgets class

——custom-data.js # Custon flight data class

——database.js # Database interacion from frontend
——export.js # Export flight into csv for MATLAB input

web_server

|—README.md

I

|—database

| F—commands.py # MYSQL Database queries

| F——connect.py # MYSQL Database configuration

| —fakedata.py # Fake data generator for the database
| “——models.py # MYSQL Database tables definition

I

|—static

| F—3d # 3D models using in the frontend

| F—assets # Images using in the frontend

| —=css # The main css file

| ——s

| [—add-data.js # Contains functions used to ingest new data in the db
I

I

I

I

20

| |—f|ight.js # Functions used to display flight data on the
dashboard.

——telemetry-data.html # HTML page for the telemetry connection

| —load-flight-data.js # Code for the worker that loads the flight data.

| ‘“——telemetry.js # Display telemetry data on the dashboard.

I

[—templates

| [—add-data.html # HTML page that allows user to input flight data

| —base.html # HTML template for the all the rest of the pages
| F—database.html # HTML page that allows user to filter the database
| F—export-data.html # HTML page to export data to Simulink input

| —flight-data.html # main HTML page for flight data visualisation

| F—flight.html # HTML template for the flight related pages

I

I

—app # Entry point for the application

Requirements
- python 3.6+
- flask
- flask mysql connector
- flask SQLAIchemy

To set up the webserver
- install python 3.6+
- setup virtual environment using pip install virtualenv
- create environment using virtualenv env
- activate .\env\Scripts\activate
- pip install flask
- pip install flask-cors
- pip install sglalchemy
- pip install Flask-SQLAIchemy

- pip install mysql-connector-python

Trobleshoot
When debugging the flask app, you might not hit the breakpoint using Visual Studio.
Make sure toset the "args" from launch.json to --no-debugger, --no-reload go to app.py

and run the app with debug set to False.

21

Appendix C — Controller Transition from MATLAB to C

The header file orientation_utils.h provides the necessary definitions and function
prototypes to convert raw gyroscope data into quaternion and Euler angle formats.
This file defines types for Euler angles and quaternions, used for orientation
representation in 3D space, and includes an orientation_data structure that maintains
the current and previous states of the types. It also declares functions to initialise,
update, and manipulate orientation data based on inputs from the LSM6DS3

gyroscope sensor.

#ifndef ORIENTATION_UTILS_H
#define ORIENTATION_UTILS_H

#include "drivers/LSM6DS3 driver.h"
#include <math.h>

#define M_PI_F 3.14159265358979323846f

typedef struct Euler {
float roll;
float pitch;
float yaw;

} Euler;

typedef struct Quaternion {
float w;
float x;
float y;
float z;
} Quaternion;

typedef struct orientation_data {
Quaternion current_quaternion;
Quaternion current_rate_quaternion;
Euler current_euler;
Euler current_rate euler;
Euler previous euler;

} orientation_data;

22

/**
@brief Convert euler angles to quaternion
@param e Euler angles
@param q Quaternion
*/
void orientation_quaternion_to_euler(Quaternion* q, Euler* e);

/**

@brief Initialise the orientation data

@note Set the orientation_data structure to @ to initialise memory
*/
void orientation_init(orientation_data* orientation, LSM6DS3_data*
_LSM6eDS3_data);

/**
@brief Update the orientation data based on gyro readings
@param dt Time difference in microseconds
@param orientation Orientation data structure
@param _LSM6DS3 data Gyroscope data
*/
void orientation_update(unsigned int dt, orientation_data* orientation,
LSM6DS3_data* _LSM6DS3_data, bool pad);

/**
@brief Check if rocket is moving based on acceleration vector
@param _LSM6DS3 data Gyroscope data
@param vector Acceleration vector
@return True if the vector is valid
*/
bool OrientationAccelerationVector (LSM6DS3_data* _LSM6DS3_data, float
vector[]);

/**

@brief Check if stationary, to correct gyro drift, based on
acceleration vector

@param _orientation Orientation data structure

@param accel Acceleration vector

@param correction Quaternion correction
*/
void OrientationAccelerationQuaternion(orientation_data* orientation,
float accel[], Quaternion* correction);
#tendif /* ORIENTATION_UTILS H */

Figure C.1 Source code for orientation_utils.h

23

The source file orientation_utils.c, implements functions to transform gyroscope data

into quaternion and Euler angle formats. The file includes essential functions for

initialising orientation data, updating it based on gyroscope and accelerometer

readings, and converting orientation represented by quaternions into Euler angles.

Additionally, the source file handles coordinate system adjustments and gravity

correction based on sensor data to maintain accurate orientation tracking despite

external disturbances.

#include "orientation utils.h"

void orientation_quaternion_to_euler(Quaternion* g, Euler* e) {

float
float
float
float

float
float
float
float
float

qw2 =
qx2 =
ay2 =
qz2 =

dcm32
dcm33
dcm31
dcm21
dcmll

g->w * g->w;
g->x * g->X;
q->y * q->y;
gq->z * gq->z;

2 * (gq->y
qw2 - gx2
2 * (g->x
2 * (g->x
qw2 + gx2

g->z - g->X * g->w);
qy2 + qz2;
q->z + q->y * gq->w);
q->y - 9->z * g->w);
ay2 - qz2;

e->roll = (float)atan2(-dcm32, dcm33);
e->pitch =
e->yaw = (float)atan2(-dcm21, dcmll);

(float)asin(dcm31);

void orientation_change_accel_coordinate_system(LSM6DS3 data*

_LSM6DS3_data) {

int32_t temp_y = _LSM6DS3 data->y accel;
_LSM6DS3 _data->y accel = LSM6DS3 data->z_accel;
_LSM6eDS3_data->z_accel = -temp_y;

void orientation_init(orientation_data* orientation, LSM6DS3 data*

_LSM6DS3 _data) {

float accel vector[4];

24

orientation_change_accel_coordinate_system(_LSM6DS3_data);
if (OrientationAccelerationVector(_ LSM6DS3 data, &accel vector)) {
//try to get an acceleration vector to use as starting angle
float pitch_angle_accel =
atan(accel_vector[1]/sqrt((accel_vector[@]*accel vector[0])+(accel vect
or[2]*accel vector[2])));
float yaw_angle_accel =
atan(accel_vector[0]/sqrt((accel_vector[1l]*accel vector[1])+(accel vect
or[2]*accel vector[2])));

// Calculate initial quaternion components based on the
estimated roll and pitch angles

float cy = cos(pitch_angle accel * 0.5f);

float sy = sin(pitch_angle_accel * 0.5f);

float cp = cos(yaw_angle_accel * 0.5f);

float sp = sin(yaw_angle accel * 0.5f);

orientation->current_quaternion.w = cp * cy;
orientation->current_quaternion.x = sy * sp;
orientation->current_quaternion.y = cp * sy;
orientation->current_quaternion.z = sp * cy;

orientation_quaternion_to_euler(&orientation-
>current_quaternion, &orientation->current_euler);

// Set initial values for previous euler

orientation->previous_euler.roll = orientation-
>current_euler.roll;

orientation->previous_euler.pitch = orientation-
>current_euler.pitch;

orientation->previous euler.yaw = orientation-
>current_euler.yaw;

} else { //accel wasn't close enough to 1g

// Set initial values for current quaternion

orientation->current_quaternion.w = 1.0;

orientation->current_quaternion.x = 0.0;

orientation->current_quaternion.y = 0.0;

orientation->current_quaternion.z = 0.0;

// Set initial values for current _euler

orientation->current_euler.roll = 0.0;

orientation->current_euler.pitch = 0.0;

orientation->current_euler.yaw = 0.0;

// Set 1initial values for previous_euler

orientation->previous_euler.roll = 0.0;

orientation->previous euler.pitch = 0.0;

orientation->previous_euler.yaw = 0.0;

// Set 1initial values for current_rate_quaternion
orientation->current_rate_quaternion.w = 0.0;

25

orientation->current _rate_quaternion.x = 0.0;
orientation->current_rate_quaternion.y = 0.0;
orientation->current_rate_quaternion.z = 0.0;
// Set 1initial values for current_rate_euler

orientation->current _rate_euler.roll = 0.0;

orientation->current _rate_euler.pitch = 0.0;
orientation->current_rate_euler.yaw = 0.0;

void orientation_change_coordinate_system(LSM6DS3 data* _LSMeDS3 data)

{

int32_t temp_x = _LSM6DS3_data->x_rate;

_LSM6DS3_data->x_rate = _LSM6DS3_data->y_rate;

_LSM6DS3_data->y_rate = temp_x;
_LSM6DS3_data->z_rate *= -1;

// Update orientation data

// On the sensor
// On the controller -> X: ROLL,

-> X: PITCH, Y: ROLL, Z:

YAW (right rule)
Y: PITCH, Z: -YAW (left rule)

void orientation_update(unsigned int dt, orientation_data* orientation,
LSM6DS3_data* _LSM6DS3_data, bool pad) {
// Change orientation data to match the controller coordinate

system

orientation_change_coordinate_system(LSM6DS3 data);

orientation_change_accel_coordinate_system(LSM6DS3 data);

float wx

1000.0f; // millidegrees/second -> radians/second

((float)_LSM6DS3_data->x_rate * M PI_F / 180.0f) /

float wy = ((float)_ LSM6DS3 data->y rate * M PI_F / 180.0f) /

1000.07;
float wz
1000.07;

float qw
float gx
float qy
float qz

((float)_LSM6DS3 _data->z_rate *

orientation->current_quaternion.
LX;
orientation->current_quaternion.
orientation->current_quaternion.

orientation->current_quaternion

M PI_F / 180.0f) /

W;

B
Z;

// Calculate the derivative of the quaternion

orientation->current_rate_quaternion.w

- wz * qz);

orientation->current_rate_quaternion.x = 0.

-wy *qz);

orientation->current_rate_quaternion.y = 0.

-+

wx * qz);

orientation->current_rate_quaternion.z

wx * qy);

Q.

Q.

5f

5f

5f

5f

gx

qw

qw

qw

+

wy

WZ

WZ

wy

ay

ay

gx

gx

26

// Update quaternion using the derivative
orientation->current_quaternion.w += orientation-
>current_rate_quaternion.w * (float)dt * le-6f;
orientation->current_quaternion.x += orientation-
>current_rate_quaternion.x * (float)dt * le-6f;
orientation->current_quaternion.y += orientation-
>current_rate_quaternion.y * (float)dt * le-6f;
orientation->current_quaternion.z += orientation-
>current_rate_quaternion.z * (float)dt * le-6f;

float accel vector[4];
if(orientationAccelerationVector(LSM6DS3 data, &accel vector) &&
pad){ //try to get an acceleration vector to use as starting angle
float pitch_angle_accel =
atan(accel vector[1]/sqrt((accel vector[@]*accel vector[0])+(accel vect
or[2]*accel_vector[2])));
float yaw_angle accel =
atan(accel vector[@]/sqrt((accel vector[1]*accel vector[1l])+(accel vect
or[2]*accel_vector[2])));
// Calculate initial quaternion components based on the
estimated roll and pitch angles
float cy = cos(pitch_angle_accel * 0.5f);
float sy = sin(pitch_angle accel * 0.5f);
float cp = cos(yaw_angle_accel * 0.5f);
float sp = sin(yaw_angle accel * 0.5f);
orientation->current_quaternion.w = 0.9f * orientation-
>current_quaternion.w + 0.1f * cp * cy;
orientation->current_quaternion.x = 0.9f * orientation-
>current_quaternion.x + 0.1f * sy * sp;
orientation->current_quaternion.y = 0.9f * orientation-
>current_quaternion.y + 0.1f * cp * sy;
orientation->current_quaternion.z = 0.9f * orientation-
>current_quaternion.z + 0.1f * sp * cy;

}

// Normalise quaternions
float norm = sqrtf(orientation->current_quaternion.w * orientation-
>current_quaternion.w +
orientation->current_quaternion.x * orientation-
>current_quaternion.x +
orientation->current_quaternion.y * orientation-
>current_quaternion.y +
orientation->current_quaternion.z * orientation-
>current_quaternion.z);

// Apply normalisation
orientation->current_quaternion.w /= norm;

27

orientation->current_quaternion.x /= norm;
orientation->current_quaternion.y /= norm;
orientation->current_quaternion.z /= norm;

// Convert quaternion to euler angles

orientation->previous_euler = orientation->current_euler;

orientation_quaternion_to_euler(&orientation->current_quaternion,
&orientation->current_euler);

// Calculate the derivative of the euler angles
if ((orientation->current_euler.roll < (-(M_PI_F) + 0.6f)) &&
orientation->previous_euler.roll > (M_PI_F - 0.6F)) {
orientation->current_rate_euler.roll = (orientation-
>current_euler.roll + 2 * M PI_F - orientation->previous_euler.roll) /
((float)dt * 1le-6f);
} else {
orientation->current_rate_euler.roll = (orientation-
>current_euler.roll - orientation->previous _euler.roll) / ((float)dt *
le-6T);
}

orientation->current_rate_euler.pitch = (orientation-
>current_euler.pitch - orientation->previous_euler.pitch) / ((float)dt*
le-6T);

orientation->current_rate_euler.yaw = (orientation-
>current_euler.yaw - orientation->previous euler.yaw) / ((float)dt *
le-6T);
}

bool OrientationAccelerationVector (LSM6DS3_data* _LSM6DS3_data, float
vector[]){

//convert from milli g to g

vector[@] = _LSM6DS3_data->x_accel/1000.0;

vector[1] = LSM6DS3 data->y accel/1000.0;

vector[2] = LSM6DS3 data->z_accel/1000.0;

//check magnitude (in g)
float magnitude = sqrtf(vector[@]*vector[@] + vector[1l]*vector[1l] +
vector[2]*vector[2]);

//nhormalise the vector
vector[@] /= magnitude;
vector[1] /= magnitude;
vector[2] /= magnitude;
vector[3] = magnitude;

if (magnitude < ©.9 || magnitude > 1.1){ //if not close to 1G
return false;

28

}

return true;

void OrientationAccelerationQuaternion(orientation_data* _orientation,
float accel vector[], Quaternion* correction){
Quaternion g_est = _orientation->current_quaternion;

// Estimate gravity direction in the world frame using current
orientation estimate

float gw_x = 2 * (g_est.x * g_est.z - g_est.w * g_est.y);

float gwy = 2 * (g_est.w * g _est.x + g_est.y * g_est.z);

float gw z = g est.w * g_est.w - g est.x * g _est.x - q est.y *
g_est.y + gq_est.z * g_est.z;

// Calculate error between estimated gravity direction and
accelerometer readings

float error_x = 2 * (accel_vector[0] * gw_x + accel_vector[1l] *
gw_y + accel vector[2] * gw_z);

float error_y = 2 * ((accel_vector[1l] * gw_z - accel_vector[2] *

gw_y));
float error_z = 2 * ((accel_vector[2] * gw_x - accel_vector[0] *

gw_z));

// Compute feedback correction quaternion
float alpha = 0.02f; // Correction gain
correction->w = 1.0f;

correction->x = alpha * error_x;
correction->y = alpha * error_y;
correction->z = alpha * error_z;

Figure C.2 Source code for orientation_utils.c

29

The header file LQR_controller_driver.h outlines the interface and structure for
implementing an LQR controller. This file declares the LQR_controller struct, which
contains arrays for handling different gain sets based on the rocket's velocity and

orientation state.

#ifndef LQR_CONTROLLER_DRIVER_H
#define LQR_CONTROLLER_DRIVER_H

#include "orientation_utils.h"

#define STATE_SPACE_DIM 6
#define NUM_GAINS 50
#define NUM_SERVOS 4
#define MAX_VELOCITY 120
#define MIN_VELOCITY 30

#define CANANDS_THRESHOLD 1500

typedef struct LQR_controller {
float* current_gain;
float current _gain_index;
float gain[NUM_GAINS * STATE_SPACE_DIM * NUM_SERVOS];
float available gains[NUM_GAINS * NUM_SERVOS * STATE_SPACE_DIM];
float avg_gains[NUM_GAINS][NUM_SERVOS][STATE_SPACE_DIM];
float zero_gains[NUM_SERVOS * STATE_SPACE_DIM];
} LQR_controller;

/**
@brief Initialise the LQR controller
@param Lqr LQR controller structure
*/
void LQR_init(LQR_controller* 1lqr);

/**
@brief Update the gains of the LQR controller
@param Lqr LQR controller structure
@param velocity Current velocity of the rocket in m/s
@note the gains are set to zero if the velocity 1is below or above a
threshold
*/
void LQR_update_gain(LQR_controller* 1qr, int velocity);

/**
@brief Perform the LQR control

30

@param Lqr LQR controller structure

@param orientation Current orientation data

@param servo_defs Servo deflections angles
*/
void LQR_perform_control(LQR_controller* 1lqr, orientation_data
orientation, ServoDeflections* servo_defs);

#endif /* LQR_CONTROLLER_DRIVER H */

Figure C.3 Source code for Iqr_controller.h

31

The source file Iqr_controller.c LQR controller designed for managing rocket
orientation and stability. It includes several functions: LQR _init initialises the controller
by setting up initial gain values across arrays. The LQR update gain function
dynamically adjusts the controller’'s gains based on the rocket's velocity, applying zero
gains if the velocity falls outside predefined safe operational ranges, thus maintaining
control stability. Additionally, LQR_perform_control calculates necessary servo
deflections based on current orientation and selected gains, incorporating safety

thresholds to prevent exceeding mechanical limits.

#include "lgr _controller.h"

int _ravel_index_2d(int i, int j)
{
return i * STATE_SPACE_DIM + j;

int _ravel_index_3d(int i, int j, int k) {
return i * STATE_SPACE_DIM * NUM_SERVOS + j * STATE_SPACE_DIM + k;

void LQR_init(LQR_controller* 1qr) {

for (uint8_t i = 0; i < sizeof(lqr->zero_gains); i++) {
1gr->zero_gains[i] = ©;

lgr->current_gain = &lqgr->zero_gains[0];
l1gr->current_gain_index = 0.0f;

double _avg gains[NUM_GAINS][NUM_SERVOS|[STATE_SPACE_DIM] = {
{

{5.9761e-05, -0.37796, -1.1106e-15, 0.26723, -0.38847, -
2.2002e-16},

{5.9761e-05, ©.37796, 1.1899e-15, 0.26723, 0.38847,
2.4892e-16},

{5.9761e-05, 1.3538e-15, -0.37796, 0.26723, 6.8727e-16, -
0.38847},

32

{5.9761e-05, -1.1147e-15, ©.37796, 0.26723, -5.3388e-16,
0.38847},
iy

{
{5.9761e-05, -0.37796, -1.1945e-15, 0.26723, -0.3698, -

6.5912e-16},

{5.9761e-05, ©.37796, 1.1945e-15, 0.26723, 0.3698, 8.5519%e-

16},
{5.9761e-05, 1.1922e-15, -0.37796, 0.26723, -5.9471e-17,
0.3698},
{5.9761e-05, -9.2426e-16, ©.37796, 0.26723, 4.3445e-16,
0.3698},
b s
{

{5.9761e-05, -0.37796, -2.54le-16, 0.26723, -0.35334,
3.2436e-16},
{5.9761e-05, 0.37796, 1.0805e-16, 0.26723, 0.35334, -
3.8215e-16},
{5.9761e-05, 5.845e-16, -0.37796, 0.26723, 4.866e-16, -
09.35334},
{5.9761e-05, -7.2657e-16, ©.37796, 0.26723, -5.5427e-16,
09.35334},
i
// REST OF THE CONTROLLER GAINS ARE NOT INCLUDED TO AID
READABILITY

};

// Include available gains
for (int i = @; i < NUM_GAINS; i++) {
for (int row = @; row < NUM_SERVOS; row++) {
for (int col = @; col < STATE_SPACE_DIM; col++) {
1gr->avg_gains[i][row][col] =
(float) avg gains[i][row][col];
lgr->available_gains[_ravel_index_3d(i, row, col)] =
(float) avg gains[i][row][col];
}

}
// Set the current gain

lgr->current_gain = &lqgr->available_gains[0];

void LQR_update_gain(LQR_controller* 1gr, int velocity) {
// Update gains based on speed

if (velocity < MIN_VELOCITY) { // Stop controller if speed to high

or low
1gr->current_gain = &lqgr->zero_gains[0];
} else if (velocity > MAX_VELOCITY) {

33

1gr->current_gain_index = 49;
lgr->current_gain = &1qgr-
>available gains[_ravel_index_3d((int)lqgr->current_gain_index, @, 0)];

} else {

lgr->current_gain_index = ((float)NUM_GAINS - 1) *
(float)(velocity - MIN_VELOCITY) / (float)(MAX_VELOCITY -
MIN_VELOCITY);

lgr->current_gain = &1qgr-
>available_gains[_ravel_index_3d((int)lgr->current_gain_index, 0, 0)];

}

void LQR_perform_control(LQR_controller* 1lqr, orientation_data

orientation,

ServoDeflections* servo_defs) {

// Extract Euler angles and Rates
float _orientation[STATE_SPACE_DIM] =

{orientation

orientation

.current_euler.roll,
orientation.
orientation.
orientation.
orientation.
.current_rate_euler.yaw};

current_euler.pitch,
current_euler.yaw,
current_rate_euler.roll,
current_rate_euler.pitch,

// Perform control

servo_defs->servo_deflection_1
servo_defs->servo_deflection_ 2
servo_defs->servo_deflection_3
servo_defs->servo_deflection_4

for (int

I
. e

1
O 0O OO
e Ve b

col = 0; col < STATE_SPACE_DIM; col++) {

servo_defs->servo_deflection_1 += 1qr-
>current_gain[_ravel_index_2d(1, col)] * _orientation[col] * 1@0.0f *
180.0f / M_PI_F; //store in degrees * 100

servo_defs->servo_deflection_ 2 += 1qgr-
>current_gain[_ravel_index_2d(2, col)] * _orientation[col] * 1@0.0f *
180.0f / M_PI_F;

servo_defs->servo_deflection_3 += 1qgr-
>current_gain[_ravel_index_2d(3, col)] * _orientation[col] * 1@@.0f *
180.0f / M_PI_F;

servo_defs->servo_deflection 4 += 1qgr-
>current_gain[_ravel_index_2d(4, col)] * _orientation[col] * 1@0.0f *
180.0f / M_PI_F;

}

if (servo_defs->servo deflection 1 > CANANDS THRESHOLD) {
servo_defs->servo_deflection_1 = CANANDS_THRESHOLD;

} else if (servo_defs->servo_deflection_1 < -CANANDS_THRESHOLD) {
servo_defs->servo_deflection 1 = -CANANDS THRESHOLD;

34

if (servo_defs->servo_deflection_2 > CANANDS_THRESHOLD) {
servo_defs->servo_deflection 2 = CANANDS THRESHOLD;

} else if (servo_defs->servo_deflection_2 < -CANANDS_THRESHOLD) {
servo_defs->servo _deflection 2 = -CANANDS THRESHOLD;

if (servo_defs->servo deflection 3 > CANANDS THRESHOLD) {
servo_defs->servo_deflection_3 = CANANDS_THRESHOLD;

} else if (servo_defs->servo_deflection_3 < -CANANDS_THRESHOLD) {
servo_defs->servo _deflection_ 3 -CANANDS_THRESHOLD;

if (servo_defs->servo_deflection_4 > CANANDS_THRESHOLD) {
servo_defs->servo_deflection_4 = CANANDS_ THRESHOLD;

} else if (servo_defs->servo_deflection_4 < -CANANDS_THRESHOLD) {
servo_defs->servo_deflection_4 = -CANANDS_THRESHOLD;

Figure C.4 Source code for orientation_utils.c

35

Appendix D — Firmware Setup

The startup file, displayed below, prepares the environment for the execution of a
firmware application. It is executed immediately after the system is powered up or
reset.

__attribute__ ((naked, noreturn)) void _reset(void) {

extern long _sbss, _ebss, _sdata, _edata, _sidata;

for (long *src = & sbss; src < & ebss; src++) *src = 0;

for (long *src = & sdata, *dst = & sidata; src < & edata;) *src++ =
*dst++;

extern void main(void);
main();
for (5;) (void) ©;

}

extern void SysTick_Handler(void);
extern void _estack(void);

__attribute__((section(".vectors"))) void (*tab[16 + 95])(void) = {
_estack, _reset, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
SysTick_Handler};

Figure D.1 Startup file

36

The code snippet below provides a set of system call implementations for newlib, a C
standard library. These system calls handle operations like memory management with
_sbrk, file manipulation routines such as _open, close, and _unlink, and basic process
controls including _exit and _Kill. For instance, _write is redirected to send data serially
over USART1, showing an adaptation to the embedded context where standard

input/output interfaces might not be directly available.

#include "mcu.h"
#include <inttypes.h>
#include <stdbool.h>
#include <stdlib.h>

int _fstat(int fd, struct stat *st) {
if (fd < @) return -1;
st->st_mode = S_IFCHR;
return 0;

}

void *_sbrk(int incr) {
extern char _end;
static unsigned char *heap = NULL;
unsigned char *prev_heap;
if (heap == NULL) heap = (unsigned char *) & end;
prev_heap = heap;
heap += incr;
return prev_heap;

int _open(const char *path) {
(void) path;
return -1;

}

int _close(int fd) {
(void) fd;
return -1;

}

int _isatty(int fd) {
(void) fd;

37

return 1;

}

void _exit(int status) {

(void) status;

for (;;) asm volatile("BKPT #0");
}

void _kill(int pid, int sig) {
(void) pid, (void) sig;

¥

int _getpid(void) {
return -1;

}

int _read(int fd, char *ptr, int len) {
(void) fd, (void) ptr, (void) len;
return -1;

}

int _link(const char *a, const char *b) {
(void) a, (void) b;
return -1;

}

int _unlink(const char *a) {
(void) a;
return -1;

}

int _stat(const char *path, struct stat *st) {
(void) path, (void) st;
return -1;

}

int mkdir(const char *path, mode t mode) {
(void) path, (void) mode;
return -1;

}

int _write(int fd, char *data, int len) {
(void) fd, (void) data, (void) len;
if (fd == 1) uart_write_buf(USART1l, data, (size_t) len);
return -1;

Figure D.2 System Calls

38

A linker script dictates how the compiler should place the program's sections into the

memory of the target device.

ENTRY(_reset);

MEMORY {
flash(rx) : ORIGIN = 0x08000000, LENGTH = 2048k
sram(rwx) : ORIGIN = ©x20000000, LENGTH = 192k

}

_estack = ORIGIN(sram) + LENGTH(sram);

SECTIONS {
.vectors : { KEEP(*(.vectors)) } > flash
.text : { *(.text*) } > flash
.rodata : { *(.rodata*) } > flash
.data : {

_sdata = .;
*(.first_data)
(.data SORT(.data.))
_edata = .;
} > sram AT > flash
_sidata = LOADADDR(.data);

.bss : {
_sbss = .;
(.bss SORT(.bss.) COMMON)
_ebss = .;

} > sram

ALIGN(8);
_end = .;

}

Figure D.3 Linker File

39

A Makefile is a configuration file used with the make ultility, a tool that automates the
building of executable programs from source code. By defining specific "targets" and
the rules to build these targets, a Makefile is used to automate the process of uploading
or "flashing" the compiled firmware onto a specific hardware device, such as a STM32.
The target executes a series of commands that transfer the binary file to the device’s

memory, enabling it to run the new code directly.

CFLAGS ?= -W -Wall -Wextra -Wundef -Wshadow -Wdouble-promotion \
-Wformat-truncation -fno-common -Wconversion -Wno-unknown-
pragmas \
-g3 -0s -ffunction-sections -fdata-sections -I. -Iinclude \
-mcpu=cortex-m4 -mthumb -mfloat-abi=hard -mfpu=fpv4-sp-di6
$(EXTRA_CFLAGS) \
-1m
LDFLAGS ?= -Tlink.ld -nostartfiles -nostdlib --specs nano.specs -lc -
lgcc -W1,--gc-sections -W1,-Map=$@.map
SOURCES = main.c startup.c syscalls.c STM32_ init.c
drivers/MS5611_driver.c drivers/BME280_driver.c \
drivers/ADXL375_driver.c drivers/LSM6DS3_driver.c
test _routines.c data_buffer.c filters.c \
orientation_utils.c 1lqr_controller.c drivers/SERVO_driver.c
kalman_filter.c

build: firmware.bin

firmware.elf: $(SOURCES)
arm-none-eabi-gcc $(SOURCES) $(CFLAGS) $(LDFLAGS) -o $@

firmware.bin: firmware.elf
arm-none-eabi-objcopy -0 binary $< $@

flash: firmware.bin
st-flash --reset write $< 0x8000000

dfu: firmware.bin
STM32_Programmer_CLI -c port=usbl --download firmware.bin ©x8000000

clean:
del -rf firmware.*

debug:
openocd -f ./openocd/scripts/board/st_nucleo_l4.cfg

Figure D.4 Makefile

40

Appendix E — Database structure

_] flight
ID_flight INT
#rocket_name VARCHAR(20)
»motor VARCHAR(20)
#date_of_launch DATE
#time_of_|zunch TIME
*location ¥ ARCHAR({20)
wind_speed FLOAT
wind_direction VARCHAR{20)
active_cantrol INT
initial_mass FLOAT
CG_location FLOAT
CP_location ALOAT
comm ents TEXT

+

1
)

" control_command
ID_control_commands INT

FID_flight INT

#timestamp VARCHAR{255)
servo_deflection_1 ALOAT
servo_deflection_2 ALOAT
servo_deflection_3 ALOAT
servo_deflection_4 ALOAT

v

=

_1 flight_data
1D _flight_data INT

@ 1D_flight INT

s raw_data INT

* data_source VARCHAR{10)

timestamp VARCHAR(255)

> fiight_stage VARCHAR(10)
high_g_acceleration_x FLOAT
high_g_acceleraton_y FLOAT
high_g_acceleraton_z FLOAT
imu_gyro_rate_x FLOAT
imu_gyro_rate_y FLOAT
imu_gyro_rate_z FLOAT
imu_gyro_offset_x ALOAT
imu_gyro_offeet_y ALOAT
imu_gyro_offset_z FLOAT
imu_acceleration_x FLOAT
imu_acceleration_y FLOAT
imu_acceleration_z FLOAT
ms5611_temperature FLOAT
ms5611_pressure FLOAT
gps_latitude INT
gps_longitude INT
gps_altitude INT
aps_velodity INT
bme_pressure INT
bme_tem perature INT
bme_humidity INT
euler_roll LOAT
euler_pitch FLOAT
euler_yaw FLOAT
euler_rate_roll FLOAT
euler_rate_pitch FLOAT
euler_rate_yaw FLOAT
euler_kaman_roll ALOAT
euler_kaman_pitch FLOAT
euler_kaman_yaw FLOAT
battery FLOAT
sattelites INT
errors TEXT

Figure E. 1 Database structure

41

Appendix F — MATLAB Input Format Equations

Equation (1) estimates the altitude based on the atmospheric pressure measured at a
given height compared to the sea level pressure. 0.19 approximates the change in
pressure with altitude under a standard atmosphere.

0.19
h=44330*(1—(101p325)) (1)

Equation (2) updates the vertical velocity of the rocket by adding the change in velocity
due to acceleration over a small time interval, At. The constant 0.00980655 converts
acceleration from the standard gravitational unit g to m/s?, aligning with the standard

unit of velocity in meters per second.
v=v+a=*0.00980655 * At (2)

Equation (3) calculates the mass decrease of a rocket over time as it burns propellant.

The initial and propellant mass are divided by the burnt time, t.

m
_ propellant
m = Minitial — f (3)

The longitudinal moment of inertia, I, of the rocket can be calculated using the
Equation (4), where L,,operiant s the moment of inertia of the remaining propellant and

Litructure 1S the moment of inertia of the structural mass (excluding propellant).

Ilongitudinal = Ipropellant + Istructure (4)

The moment of inertia for cylindrical bodies, typical rocket shapes, about their
longitudinal axis can be calculated using Equation (5). In here, m is the mass of the

cylinder (propellant or structure), r is the radius of the cylinder and h is the height.
1
Ieytinder = 12 *m x (3 * r% + hz) (5)

Equation (6) calculates the rotational moment of inertia for a body, assuming a
simplified cylindrical distribution of mass. The radius, r, indicates how far the mass, m,
is spread from the rotational axis, and the 0.5 is a coefficient that changes based on

the geometry of the body.
Lrotationar = 0.5 * m x r? (6)

The centre of gravity (CG) for the rocket is calculated based on the amount of
propellant consumed, with an assumption that the CG shift is linearly dependent on

the propellant mass consumed. The change in CG location is given by the Equation

42

(7), where CG;iiiq; is the initial centre of gravity location and ACG is the shift in the

centre of gravity due to propellant consumption.
CGnew = CGipitias — ACG @)
The shift in the centre of gravity (ACG) can be calculated as Equation (8):

ACG = Mconsumed " CGinitial (8)
Minitial 2

The Mach number is the ratio of the object's velocity to the speed of sound in the
surrounding medium. y represents the heat capacity ratio of the air, R is the specific
gas constant for air, and T is the ambient temperature. This equation is used to
determine how supersonic the object's movement is relative to the speed of sound at

a given temperature and atmospheric condition.

mach = — 9

/y*R*T

43

Appendix G — CPP

IMPROVING AN ACTIVE STABILITY SYSTEM OF A SOUNDING
ROCKET BY ADDING DATA MONITORING AND
INTERPRETATION METHODOLOGIES

MECHS5080M Contract Performance Plan

MECH5080M Project Title: Improving an
active stability system of a sounding rocket
by adding data monitoring and
interpretation methodologies

Students:

Alexandra Posta 201318973
Alexandre Monk 201299981
Antoine Durollet 201439724
Oliver Martin 201327297
Sam Bruton 201317656

Supervisor: Dr Jongrae Kim
Industrial Mentor: Theo Gwynn

Date: 08/11/2023

44

Contents
B L1 (o T [T (o T OSSO URT PRSP 1

1.1 Background.
1.2 Aim.... R R R S A B s

BB OB OBHINEI oo amsnrsmonsenion amssniss s b s S S A S R A A S R AR 2
T4 DelIVEraDIOS: v s v sy P T S O S T B S S S AT e 2
2. PTOIOOY DI i a0 s i e e e e T T R S A T S S 3
2.1 Tacks, milestones and iMeline .c.iminmnnmninimnanniiirbamnism e ianisiimees 3
2:2. Team SHUCHITE oorrmnsrrnr e s s T R T 4
2.3 R OSOUNOEE s v o o s e T O s 5
3: Project Considerations . mwisiinennmn s s me e e s s 6
3.1 Rigk analysis: s s e nrr s an s s s s e 6
3.2 Ethical CONSIEratioNSooiiiiiiiii ettt e 8
3.3 Project StaKENOIABIS et 9
L O oy o1 -1 T PSSP UPPRR 9
O: RO O EIIOBS s evies b essiue n s s ssmns s s o sk S i i 5 2 N M08 Y e S SEF VE AR A0 S 9

45

1. Introduction

1.1 Background

The Leeds University Rocketry Association (LURA) is a student rocketry team, founded in 2021.
In a short span, LURA has launched multiple rockets and set a new standard for United
Kingdom (UK) teams at the Spaceport America Cup. The team is also on track to break the UK
amateur altitude record, targeting an ascent to 13 kilometres [1]. All of the team'’s efforts are
pointed towards the overarching long term goal of reaching the Karman line, the boundary
between Earth's atmosphere and outer space, which no UK student team has reached. To
support this goal, the Aptos Project has been created to develop a working active vertical
control system that will allow future LURA rockets to maintain a vertical flight path and reach

higher altitudes.

External factors have a significant impact on a rocket’s trajectory. Typically, two main systems
are employed to mitigate the trajectory. The first is a passive system, that is achieved by
controlling the centre of pressure and gravity of the rocket [2]. The rule for stability is that the
centre of pressure should be located at least one rocket diameter's length behind the centre of
gravity [3]. However, the passive control system is not enough as the rocket will always weather
cock due to cross winds, hence the addition of an active control system. [4] The second option
is to use control surfaces. These surfaces come in various forms: they can be similar to the
elevators on commercial aircraft, which adjust the passive fins' trailing edges, or they can be
entire fins that rotate, akin to the rudders on fighter jets known as rolling tails [5]. The previous
Aptos group suggested the use of canard fins mounted at the front of the rocket as the active
control system. Their design was inspired by other rocketry teams, such as TU Delft, who
successfully created a control system module to control roll [6]. The previous group built
Pathfinder, a rocket capable of doing active control, and launched it at the Fairlie Moore

Rocketry Site in Scotland.

However, the launches done last year lacked active stabilisation due to issues on the
electronics and software systems. The current Aptos team plans to refine the existing work by
optimising the code, redesigning the telemetry and electronics, as well as conducting at least
one launch with the active control system enabled. If successful, this project would then be
incorporated into future LURA rockets to reach higher altitudes and potentially set a UK

precedent and aid other teams in their own development efforts.

46

1.2 Aim

The aim is to improve the active vertical stabilisation system of a sounding rocket, by using
data monitoring, transmission, and interpretation techniques. This will allow refinement of the
control system to correct the rocket's orientation with greater precision, in favour of a higher

apogee.

1.3 Objectives
1. Create a control algorithm and simulation using a high-level development tool.
2. Create an electrical system & custom flight computer to provide all the required
functionality to enable active control, telemetry, and data monitoring systems.
3. Improve the design of the canards system to achieve a more robust design and the
ability to feedback the position to the control algorithm.
4. Establish air to ground telemetry communication with the rocket.

To perform data filtering, analysis, and visualisation to further improve the control loops.

1.4 Deliverables

Table 2.1 Deliverables for each objective

Control algorithm producing output control data given rocket input sensor data.
Simulation of the rocket flight path and canard orientation given random and systematic
1 interference.

Storage of all output data produced from the control algorithm for study and use in offline
simulations.

Schematics of the custom flight computer & electrical wiring.
2 PCB Gerber files for the custom flight computer.
Manufactured custom flight computer & electrical system.

CFD analysis to determine canards shape.
3 Design an actuation system for the canards.
Manufacturing of the canards and actuation system.

Radio PCB that can interface with the flight computer to broadcast telemetry data.
4 Onboard and ground antenna designs and hardware capable of reliably transmitting data
beyond apogee.

An easy to access and manipulatable database that contains flight data.
5 A web-based application to visualise data in dashboard format.
A script that feeds data from the database into the control algorithm.

A group report and five individual reports that outline the work completed.

A PowerPoint presentation to present the findings.

Extra | An ethical report that provides ethical considerations.

A GitHub repository that contains the control algorithm, flight computer firmware and data
display related software.

47

2. Project Outline

2.1 Tasks, milestones and timeline

The tasks, milestones, and timeline are laid out in Figure 2.1. While blue is the default colour,

red highlights crucial tasks that are essential to the project's development. Although the team

aims to finish all tasks within the given timeframe, some may require additional days, as shown

by the floating lines.

bam

o 2004 o X 03¢ By 224
(T (O O I

Fromet ot
v mpor

e oo

ll

Figure 2.1 Project Aptos Gantt Chart

Three milestones were identified: the First Launch, the Second Launch and the Project Report

deadline, all of which must be met by the 5 of May 2024. The initial milestone, scheduled for

February 2024, tests early-stage systems on a lower-altitude launch without canards. In

preparation for the launch, the control algorithm will be tested in a simulated environment,

hardware-in-the-loop testing will be applied to the custom flight computer and ground telemetry

testing will be performed. The second milestone is the launch of Pathfinder with an activated

control system. The interim period focuses on refining electronics, software, and integrating

mechanical systems. The final milestone corresponds to the deadline of the project report.

Approximately one month has been allocated in April for report writing and final data analysis.

The last task left for the team is to generate an ethics document related to the project.

48

2.2 Team structure

2.2.1 Software Engineer - Alexandra Posta

Alexandra is a fifth year Mechatronics & Robotics student with a placement completed at
Scuderia AlphaTauri Formula One as a Software Engineer. As a Software engineer, Alexandra
has developed data pipelines from the Wind Tunnel sessions, custom web applications for
competitor analysis and simulation tools for pre-tunnel pressure testing. This experience makes
Alexandra a candidate to filter, store and display flight data. From a rocketry perspective,
Alexandra is leading the Avionics pocket from the Leeds University Rocketry Association

(LURA), putting her in a good position to lead the group and organise launch days.

2.2.2 Electronics & Telemetry Engineer - Alexandre Monk

Alex is a Mechatronics & Robotics student who has completed a 14-month internship at
Renishaw, focusing on FPGA bus design and Flash integration, building good experience in
communications. Additional PCB design work completed on the placement will also aid the
board design for the onboard telemetry. He also has extensive experience with automated C
code generation from MATLAB, which should alleviate workload during this project when
transferring the control algorithms developed for simulation onto hardware. Previous work on
APRS and amateur radio tracking systems for weather balloons has provided the
understanding necessary to design of all parts of the telemetry system. Past Formula Student
electronics work and electric powertrain projects have given Alex a good electronics foundation

and the practical experience necessary for reliable PCB design in high vibration applications.

2.2.3 Aerodynamics Engineer - Antoine Durollet

Antoine is a mechanical engineering student who has been a part of the Aerostructures team
at the Leeds University Rocketry Association for a year. During this year he has gained valued
experience in ensuring the integrity of the structure of rockets, as well as using the different
flight simulation software to optimize the shape of rockets. All of these skills can be reapplied
to design a canard actuation system. He has been learning about Fluids Dynamics for the last
5 years and knows how to use different CFD software, which will help him make decisions
based on aerodynamics constraints. All those experiences give him the knowledge to fulfil the

role of aerodynamics engineer.

49

2.2.4 Electronics Engineer - Oliver Martin

Oliver is a Mechatronics & Robotics student who has completed a 13-month internship at Red
Bull Advanced Technologies, as an electrical design engineer. While on placement he gained
experience defining electrical systems and their requirements, and then taking the appropriate
steps to develop the system in an industry environment. He also has experience using
microcontrollers, designing circuits, and programming in other projects, including working in the
Avionics team at LURA. Therefore, he is well suited to the role of Electronics Engineer leading

the development of the Avionics system.

2.2.5 Control Engineer - Sam Bruton

In the role of Control Systems Engineer, Sam is a final year Mechatronics and Robotics student
with industry experience designing, prototyping, testing and commissioning factory operations
equipment and machinery for Siemens on a 14-month placement. As a Robotics and
Automation Engineer, he was responsible for system design and integration and has the ability
to communicate and liaise with team members with different backgrounds, to successfully
implement a system with exemplary control. He is also a member of the LURA Avionics team
working on the control system for their latest rocket and has experience in simulation and

modelling. Taking all this into consideration, he is best suited for this role.

2.3 Resources

2.3.1 Software Resources

The Avionics circuit schematics and PCB Gerber files will be produced using KiCAD, an open-
source, free-to-use software. In conjunction with KiCAD, Library Loader from SamacSys will be
used to add the necessary components into KiCAD, also free to use. For the control system
design & simulation, MATLAB/SIMULINK will be used. Any CAD models for physical
components will be designed in SolidWorks and CFD analysis will be carried out using Ansys.

These three software packages have licences provided by the university.

2.3.2 Monetary Resources

In addition to software, there is a requirement for capital expenditure to purchase components
facilitate launching the rocket. As the rocket structure has already been built and is reusable,
the Bill of Materials is reduced from that required to build a complete rocket. Only components
that are being re-engineered or are single use are included. Table 2.1 outlines the top-level

project budget, a more detailed breakdown of costs can be found in Appendix A.

50

Table 2.1 - Budget Outline

Item Cost
Wind Tunnel Jig £15.49
Canards & Actuation £29.65
Avionics £297.54
Telemetry £70
Launch costs £513
Sub Total £933.18
Contingency 20% £186.64
Total £1,119.82

3. Project Considerations

3.1 Risk analysis

Several risks were identified that could prevent the completion of the project, and steps were
taken accordingly to mitigate the possibility and effects of any obstructing risks. An approach
analysing risk probability and severity was taken in order to identify the most influential risks

and introduce additional mitigation measures accordingly.

Each table contains risks associated with the project. The overall risk was calculated by
multiplying the probability factor by severity and may go up to 25. The overall risk was

recalculated after the mitigation factors were applied.

Risk: Underestimation of actual duration to complete the planned functionality.

Probability 4 Severity 3 Overall Risk 12

Mitigation: Increase parallelism and reduce dependencies to allow more flexibility in individual
task completion time. Factor of safety added to task time estimates to reduce
likelihood of overrunning.

Probability 3 Severity 1 Overall Risk 3

Risk: Difficulties obtaining / manufacturing components.

Probability 2 Severity 3 Overall Risk 6

Mitigation: Widely available components with viable alternatives selected. Manufacturing
methods that are widely available for low cost are used to mitigate risk of a single
suppliers or component types being unavailable.

Probability 1 Severity 2 Overall Risk 2

51

Risk: Budget shortage.

Probability 3 Severity 4 Overall Risk 12

Mitigation: A core implementation budget and additional launch budget are specified. If a
certain part of the budget is exceeded, the team can reduce the scope of testing
without compromising on the deliverables. If necessary, external companies can be
approached for sponsorship in order to bring in sufficient funds to complete the
project. A contingency of 20% has been added within the budget estimate to mitigate
risk of overspending.

Probability 3 Severity 2 Overall Risk 6

Risk: Expertise lacking.

Probability 3 Severity o | Overall Risk 9

Mitigation: The project is designed to make use of existing knowledge on the team, without
significant additional learning. Software packages are used that most members are
familiar with. Simulation allows the team to experiment with novel solutions without
significant risk to project completion. Academic and industrial supervisors can
provide guidance if unexpected problems occur.

Probability 2 Severity 2 Overall Risk 4

Risk: Unable to

launch a sounding rocket.

Probability

2 Severity 4 Overall Risk 8

Mitigation:

Some risks associated with launch permissions and logistics are difficult to predict,
however any planning or forms required for these will be completed as far ahead of
time as possible to enable alternative or revised plans to be implemented.
Simulation, and bottle rocket launches that do not require travel or licensing can be
completed which would neglect only the physical canard implementation. Multiple
launches are also planned to reduce the impact of a single launch cancellation. The
possibility of downgrading to a smaller solid propellant rocket that is easier to license
also exists.

Probability

2 Severity 2 Overall Risk 4

52

Risk: Catastrophic rocket failure or failure of a project part.

Probability 1 Severity 5 Overall Risk 5

Mitigation: The case of destruction of hardware has been planned for by reducing the value of
actual components as much as possible to enable remanufacturing if necessary. An
extensively tested and reliable rocket is used to reduce the risk of new problems or
catastrophic failure occurring. Parts are individually tested for robustness and take-
off forces are considered during the design phase.

Probability 1 Severity 4 Overall Risk 4

Risk: Loss of expected man hours.

Probability 4 Severity 2 Overall Risk 8

Mitigation: A margin of error has been added in task time estimates. The project Gannt chart
will be routinely updated and regular meetings and schedule revisions ensure the
project can continue on track as much as possible.

Probability 4 Severity 1 Overall Risk |4

3.2 Ethical considerations
This project includes no human participants . i i« you weam number s is the PID number given 1o y0u ot sllocaton =
or their data and thus considerations to this 101

effect do not have to be made. This has
2. who is your team lead?

been pointed out in the ethical approval

Alexandra Post

form, on the right. The subject is merely

active control and telemetry for a rocket. — boeyew peiest el humen perticpants o therdatefeg inervim, questiomnaie focs
Whilst these technologies can be

implemented on weapons systems, for

example in missile design, which can be DT
considered immoral [7], the research

conducted here will not intentionally %

contribute to the defence sector. Its

funder requirement or a legal requirement, ethical review is not needed (na need to

application and scientific value for a ~ ™™= &

student team outweighs any potential use
Figure 3.1 Ethical Approval Form
by the defence sector.

A consideration should be made as to the environmental impact of launching a rocket, as the
sounding rocket launches planned for the project do emit greenhouse emissions from the black
powder and solid propellant burned onboard. However the quantities of these are small and

thus have an insignificant impact, meaning ethical approval is not required.

Risk of a rocket rocket failure event is incredibly low. A launch with the control system switched
off will be conducted first to enable control system behaviour. This is to be evaluated and
deemed safe before any controlled launch occurs. The rocket will also be launched at a
designated launch site, clear of people or property, to low altitudes, where even a catastrophic

failure or incorrect guidance would not result in destruction or harm to any life or property.

3.3 Project Stakeholders

Three stakeholders are interested in the success of this project. Firstly, the Engineering
Department from the University of Leeds would benefit from the project. A vertical control
algorithm would not only enhance the university’s reputation in rocketry but also draw positive
attention as it allows students to undertake innovative projects. Secondly, Theo Gwynn from
Airbus is integral to the project, as he can offer vital industrial expertise alongside his Airbus
colleagues to push the project forward. Finally, LURA anticipates considerable advantages
from a successful outcome, as it would enable the integration of active control stabilization

systems in its future rockets — essential for setting new altitude records in the UK.

4. Conclusion

In conclusion, project Aptos aims to integrate a more robust data pipeline into the control
algorithm of the vertical active stabilisation system of a sounding rocket. Ultimately, this would
enable the greater team, LURA, to launch rockets at higher altitudes. The team working on the
project has a diverse range of skills and background knowledge to build upon the system
developed in the previous year. This year, the team's primary focus will be on refining the
control algorithm. To achieve this, innovative methodologies will be incorporated to improve the

way we acquire, transmit, process, and utilize data.

5. References
[1] UKRA. 2019. UK Rocketry Altitude Records. [Online]. [Accessed on 1st November 2023].

Available from: http://www.ukra.org.uk/records/allclass

54

[2] Benson T. NASA. 2021. Conditions for Rocket Stability. [Online]. [Accessed on 15t
November 2023]. Available from: https://www.grc.nasa.qov/WWW/k-12/rocket/rktstabc.html

[3] Mandell G., Caporaso G., Bengen P. B. 1973. Topics in Advanced Model Rocketry.

[4] Benson T. NASA. 2021. Weather Cocking. [Online]. [Accessed on 15t November 2023].
Available from:
https://www.grc.nasa.gov/www/k12/rocket/rktcock.html#:~:text=Rocket%20Weather%20Cocki
ng&text=Following%20the% 20liftoff%200f%20a,the%20top% 200f%20the%20figure

[5] Pike J. 2016. F-14 Tomcat. [Online]. [Accessed on 15t November 2023]. Available from:

hitps://www.globalsecurity.org/military/systems/aircraft/f-14-design. htm

[6] DARE n.d. 2014. Advanced Control Team — Delft Aerospace Rocket Engineering. [Online].
[Accessed 5" November 2023]. Available from: https://dare.tudelft.nl/projects/act/

[7] Forge J. The Morality of Weapons Research. Science and Engineering Ethics, vol. 10, pp.
531-542, 2004.

Appendix A. Budget

Project Aptos Module CPP Budget

Whind Tunmel 1

T © 989

6 {4onen x 100erur) z £ 550

2965

ole M3 Stainiess Stoel icular 109 1 G 307
Ball Boaring 03 all Baari 1 € 020
Canad and Gaar Fdament S PRO 1 75mm Random Colout FUA 30 Printar Flamant 3 « 1638
Perbosrd Spare 2754

STMALRSVITE 1 O 36,74

o) ‘ 1788

2 P 1838

AM37S 2 1 88

MAAX M1DS-00B 1 -y 60

25832 1 Y i

TIVZ673300HR 2 1t 210

1 1€ a4

2 1 e 20

2 3 s e

1 1% o8t

1 1 166

20 o« am £ 200

20 n ¢ a0 c 1200

Schorky diodes 0805 s 3« a0 € 30

TAAMCIGRGW.0100,1 s 1 e am il & tao

W Channel wosfer 1 1« asn 5 & o0

P Raagars, BALETY COMMAEIONS, & OThe: PCS mEuted connactors 5 3« 1o ‘ 800

Peks Custorn PCBs from JLC PCB 2 I 2500 c 000
Arming Switch 1 o & %00 c 100
Likos 5C SUPCRSPORT PRO LIPO BATTER (With X730 Connactor) 2 2 ¢ 104 1 c ane
STMY? Niseo Board ity 1 ‘ 1500 ‘ 15 00
Tel: r 060
Hadic Rocelver 11 ansmtier T i Too0, « 1000
Bk 2 000 ‘ 000
Rochet Antenna 1 I 15.00 c 1500
ATLSDR 1 € 25.00 c 2500
Ground Antenna 1 15,00 c 1500
Laneh Costs 3 s1300
Istlaurch Motors HLIW- 148 38/140RMS-PLUS B & 4250 naps:jjuzardro: i 8500
2na aunch Mstors 5707144 38/ 108D RIVS-PLUS Motar 2 £ 11400 nups Jjviza fe 22500
Fuel Fusifor il 308 MEC P 2 c 10000 c 20000
Sub-Total € EEEET
Comtingency 20% ‘ 186 64
Toral € 111982

10

55

Appendix H — Meeting logs

MECHS5080M Team Project - Supervision Meeting Log

Meeting number: 1 Date: 02/08/23

Attendance: Alex Monk, Alex Posta, Sam, Oliver,
Antoine, Dr Jongrae Kim

Agenda

Introduction to the group project

Progress since last meeting

Generated the brief

Key notes

We need to write the initial flight simulations in Python/MATLAB and only after translating to C.

The results need to be compared

Minimum of two people need to check any software developments
Antoine is in charge of assembly

Think about the IMU/navigation system that will be used on the rocket

Actions for next meeting

Decide:

What to achieve for the first launch

Clear task distribution (create a block diagram for it as well and use it as a tracking system)
Draft for budget

Decide who is leading

Supervisor signature

Do i

56

Attendance: Alex Monk, Alex Posta, Sam,
Qliver, Antoine

Meeting number: 2 Date: 17/10/23

Agenda

« Progress Update

Decision on leader and submission of ethics form

Go briefly through the previous work

Task allocation and create rocket system diagram
Discuss what would we like to achieve for the first launch
Check the budget

Progress since last meeting

* Get the information from the previous Aptos group
* Alex Monk did research:
o We're limited to a 10mW transmitter. We could get an extension to 400mW, but that’s not
a lot of data. At apogee we can get about 50bytes/s of data

Key notes

Team leader is... Alex Posta. The module leader is required to be informed of this decision by email

Specification:
+ Talked about how the general tasks were split, and what to do for the next meeting
e Check document here: hitps://leeds365-
my.sharepoint.com/:w:/r/personal/mn20a2d leeds ac uk/ layouts/15/Doc.aspx?sourcedoc=%7
B4A9DAA4B-9BEC-4609-ABES-
DOC9B6BAAQF7%7D&file=Specification.docx&action=default&mobileredirect=true

First launch:

« Flying depends on the weather. Launch sites open back in February, but the weather is pretty
unstable then. We should aim for the system to be ready by mid-February but expected to fly in
March. (19" February)

+ Forthe launch:

o Minimum viable avionics system: get the first iteration for PCB and get data

Budget:
e Tryto get 2 launches in: one small MRC (mid Feb) and one big one in SARA
« Rough estimate £1500

Actions for next meeting

Task Allocation:
e Fill out the specification document individually. This will be reviewed by the end of the week.
« Estimate the length of each task for addition to the Gantt chart.

s Have alook at the previous CPP and come back to talk about what needs to be changed.
¢ Talk to Dr Kim,
o organize a meeting with Airbus (Theo Gwynn)
o clarify whether we can use last year's data.
Alex Monk: system diagram and what is needed for the first launch.
Ollie: think what electronics are needed and include them into budget.
Sam: check budget for control + redesign control for canards.
Antoine: check WT and prior simulations for CFD.
Alex Posta:
o Submit the ethics form to the module leader (Wassim Taleb).
o Check the general cost of launches and what is needed for the first launch.

Supervisor signature

Dongn oo

57

Meeting nhumber: 3 Date: 20/10/23

Attendance: Alex Monk, Alex Posta, Sam, Oliver,
Antoine, Dr Jongrae Kim

Agenda

Go through actions taken since last meeting
Check initial:
o task allocations
o specifications
o budget
Talk through launch schedule
Any other questions

Progress since last meeting

All:

Initial task allocation and specification put together

Initial budget sheet created

Team lead decided and ethical form submitted

Each group member did some research on their respective topics
Chapters put together for the CPP

Key notes

Bi-weekly meeting starting 3@ November, 12pm Fridays.

Decision to use STM32 as flight computer.

For first rocket launch, where canards will not be active, feed target orientation data into the
control system, instead of the actual orientation, to check response given an optimal flight.
Consider control system response when orientation error is large.

Add mechanical end stops to the canards.

Actions for next meeting

Create a Gantt Chart for tasks and send it BEFORE the next meeting. Make sure to structure it
to clearly demonstrate tasks dependencies, i.e. which tasks can only be started after another is
finished.

Add hardware & software simulation tasks to task list.

Create a technical specification / requirements document, and include metrics/methods that
demonstrate successful testing/completion.

Create a design interfaces document showing connections and comms protocols between each
section / PCB / chip that will be utilised. Include a complete system diagram.

The document should also contain the data pipeline, showing data format from sensors, to flight
computer, to storage & telemetry.

Have CPP draft complete by next meeting.

Create a mass budget estimate and select a target altitude.

Supervisor signature

-

iy

58

Attendance: Alex Monk, Alex Posta, Sam, Oliver,

Meeting number: 4 Date: 24/10/23 .
Antoine

Agenda

« Progress of Gantt chart

« System Diagram

o CPP section allocation

e Avionics:
o Obtaining Arduino & Servos for testing
o Component redundancy & failsafe procedure
o Arming/initialisation

+ Discussion of Spin Can

Progress since last meeting

Antoine:
« Software Learning for CFD Analysis
Oliver:
+ Avionics Specification, draw.io diagram and KiCad progression
Alex Monk:
« Telemetry Specification progression
Alex Posta:
e Outline of cpp and gantt chart
Sam:

« Research

Key notes

Looked through the Gantt Chart and assigned people to all tasks.

Decision to have two different power sources for avionics/canards.

Add a relay for the canard? To cut the power. Yes, decided it should be investigated.
Split the CPP tasks.

Actions for next meeting

+ All to go through the Gantt chart and check if all section topics and deadlines are correct
o Alex Monk — Tuesday
o Antoine — Wednesday
o Oliver — Wednesday
o Alex Posta — Thursday
o Sam - Thursday

Supervisor signature

e

Attendance: Alex Monk, Alex Posta, Sam, Oliver,

Meeting number: 5 Date: 31/10/2023 .
Antoine

Agenda

« Progress since last
« Gantt Chart

+ CPP

« Friday meeting

Progress since last meeting

Alex Monk:
+ Picked a frequency for telemetry, leaning towards a SMD transceiver chip

Oliver:
¢ Schematics are at about 50%, Resources section of CPP mostly completed, more budgeting

Antoine
+» Research into different aerofoils, understanding better last year's aerofoil and why it was
chosen

Alex Posta:
+ Mainly looked at CPP and Gantt chart

Sam:
s CPP, research into control

Key notes

e CPPdueat12on 8/11/23
Do a review for the avionics schematics in two weeks

Gantt chart timing for telemetry doesn’t work for the first launch
Current title of the project doesn't fit with the work we need to do
Going over objectives and deliverables — each person should do the objectives and
deliverables for their section of the project.
For resources, have small table for costs, if there is a page free then add the full table
¢ Meeting with airbus
o Small PowerPoint about LURA and Aptos
o What can airbus provide knowledge wise?

= How they process data, data filtering, pipelines, data correction

= How do they suggest we test the system before flight

= Suggestions about mounting the canards and linkage to the servos
o Financial support

Alex Monk — preference for C language for ground station interface, putting data into database.

Actions for next meeting

Review the budget by end of Thursday 2/11/23 - ALL

Move schematics & all files onto the shared OneDrive — ALL
Get hold of Theo's individual report — Alex Posta

Review gantt chart timings — Alex Monk

Have draft of all CPP sections by Friday 3/11/23 — ALL
Create a more accurate project title that reflects the project
PowerPoint for airbus meeting — Antoine

Supervisor signature

pr—e

60

Attendance: Alex Monk, Alex Posta, Sam, Oliver,

Meeting number: 6 Date: 03/11/2023 Antoine, Dr Jongrae Kim, Theo Gwynn

Agenda
« Small PowerPoint about LURA and Aptos
e Ask Airbus

o Ifthey need anything from us?
o What can airbus provide knowledge wise?
= How they process data, data filtering, pipelines, data correction
= How do they suggest we test the system before flight
= Suggestions about mounting the canards and linkage to the servos
o Financial support
e Ask for feedback on CPP and Gantt Chart

Progress since last meeting

e« All - work on the CPP

Key notes

e« Objectives:
o Get started on the wind tunnel early as it takes a long time to have it available
o Need to define success parameters for avionics
o Need to think of a backup plan in case of things don't work

+ Airbus Q&A:
1) What does Airbus need from us?
a) Airbus just wants to develop relationship with university and students. Airbus will
never be able to use the data. So, we define what we want to do
2) How they process data, data filtering, pipelines, data correction
a) Theo will contact someone for that
3) How do they suggest we test the system before flight
a) Theo will contact someone for that
4) Suggestions about mounting the canards and linkage to the servos
a) Mount the canards to a stronger body. Want to shift and separate the load
5) Can we be added to the presentations, with the CubeSat project?
a) Theo will see what he can do
6) Can we get money?
a) Probable not directly from Airbus. However, Airbus works with companies that
support uni teams. So, Theo will reach out to them
7) Any advice for LURA in the future?
a) LURA has done well, but it will be interesting how it goes seeing that Theo Y. is
gone

Actions for next meeting

Drop a message to Theo with questions.

Supervisor signature

e

61

Meeting number: 7 Date: 21/11/2023 Attendance: Alex Monk, Alex Posta, Sam, Oliver,

Antoine

Agenda

» Progress Update

+ Budget Discussion

» Schematics Review

e Presentation Review

e Task List for next meeting
Progress since last meeting
Antoine:

+ Has selected the fin shapes, but has been busy with LURA

Alex Monk:

s Theoretical schematic for the PCB. Implementation in KiCad required
Sam:
« Literature and project research undertaken, but has been busy with LURA

Oliver:

¢ Didn't do much. Worked on LEDs, buzzers that we will need. Did some current predictions.
Alex Posta:

¢ Looked at data bases. Seem to be going for InfluxDB

+ Got feedback from Theo

Key notes

+ When is the presentation poster deadline?

 Hardware testing should start in beginning of January

» CRC checking was recommended by Theo to check the data. Need to create a protocol that
includes CRC checking. He talked about SpaceWire protocol.

¢ Dave asked about data filtering.

« Theo didn't answer the question about actuators.

+ Budget must be submitted fast. Uni can be slow to approve budget and order stuff for us.
Hopefully it's not the SIPR method.

+ Budget:

e Draft PCB to be included

e Look at the schematics on our own, but Ollie gives us an overview of what he has drawn. Will
have a review later this week. Has been decided to be on Friday
Maybe use diodes to prevent reverse current? Drop a message to Arthur about it.

« Need to decide how the internal structure is.

+ Need to prepare a ppt for the presentation showcase.

Actions for next meeting

« Antoine:
¢ Needtorun CFD sims
¢ Alex Monk:
* Need to do draft PCB on KiCAD
+ Create a chat with Theo Gwynn
* Ollie:
« Want to get schematics done this week
e Alex Posta:
e Ask Dr Kim on Wednesday how to order stuff

Supervisor signature

Dongn oo

62

Attendance: Alex Monk, Alex Posta, Sam, Oliver,

Meeting number: 8 | Date: 29/11/2023 .
Antoine

Agenda

« Updates from everyone
« PowerPoint Presentation
+ What to do for next week

Progress since last meeting

Antoine:
¢ CFD simulations are ready, Ansys took quite some time to run some simulations
¢ Got the model in a steady state

Alex Monk:
» None
Sam:

« MATLAB legacy, looking into LQR => improve with steady state error
Oliver:

s Completed the schematic, schematic review and started the PCB design
Alex Posta:

+ Install MySQL and InfluxDB locally and test them

Key notes

¢ Go over the PowerPoint for the December showcase

Actions for next meeting

Oliver:
e Finish the PCB and complete BoM
+ Generate new PDF with PCB

Alex Monk:
« Have schematics ready and reviewed
« Tryto start PCB layout

Sam:
e Fixthe file for MATLAB
« Develop the equations for the new canard + steady state error

Antoine:
e Finish CFD simulations for next week

Alex Posta:
e Select a database (MySQL) and start on the server (Flask)

All:
« Work on the PowerPoint

Supervisor signature

g/

63

Attendance: Alex Monk, Alex Posta, Oliver, Antoine, Dr
Jongrae Kim

Meeting number: 9 Date: 06/12/2023

Agenda

e« Order PCB components
s Check the PowerPaint for the presentation

Progress since last meeting

All:
e Have worked on providing information for the PowerPoint

Key notes

+ Model mathematical model of the rocket to feedback into the control when testing
o How do we model the force relative to speed on the canards
o Complexity comes from speed => assume air density is constant
o Velocity changes => torque generated by fin is difficult (this needs implementation in
simulator)
o Then convert the response into fake sensor data

« Review of PowerPoint
o Too many figures per each slide
o Too much text on slides

Actions for next meeting

s Everyone to change their sections of the PowerPoint to account for the feedback

Supervisor signature

e e

64

Meeting number: 10

Attendance: Alex Monk, Alex Posta, Oliver, Antoine,

Date: 11/12/2023
Sam

Agenda

« PowerPoint Project Showcase
o Work during winter
+ When we are back

Progress since last meeting

e Work on the Project Showcase PowerPoint

Key notes

« Split presentation:

Introduction: Alex Posta

Aims + Objectives: Sam

Risk assessment: Alex Monk

Previous work: Ollie

Design/Update sections: Each one of us should talk about ours
Future work and conclusion: Alex Posta

o}

o 0 0 0 0

e January:
Exams: 17" and 19" of January

PCB: After the 19" of January start to assemble
Wind Tunnel Testing: after the 22nd of January

o}
o
o}

Actions for next meeting

e Over Christmas (up util the 27" Dec):

o}

Oliver:
= Flowchart,
= Look at drivers/logic,
= Pseudocode for logic
Sam:
= |mprove MATLAB controller
Antoine:
= CAD for testing jig
= start actuators CAD
Alex Monk:
= [nitial design for the hardware-in-the-loop testing
= Basic antenna design
Alex Posta:

Webserver + Ul
Look into drivers for firmware

Supervisor signature

oo/

65

Attendance: Alex Monk, Alex Posta, Oliver, Antoine,

Meeting number: 11 Date: 12/01/2024
Sam

Agenda

« Updates over Christmas

« Estimate arrival time for boards and actions
o Define tasks to do over January

e Launch Ops

Progress since last meeting

Antoine:
+ Finalized shape and planform of canard

Alex Monk:
+ Designed antennas, and ordered driven element planar patch PCBs

Ollie:
¢ Made a first software flowchart, but is pretty basic

Sam:
+ Nonews, has been working for his exams

Alex Posta:
+ Made a webserver for flight data

Key notes

« Parts are still waiting for approval and haven't been ordered yet

« Might want to focus on other tasks as the part arrival date is a big unknown. Lots of software
and design to do

» Report is due on 15t May. |deally, we will fly in the 15t week of April, but if we fly in the 2" we can
start writing it before flying

e Launch Ops:
o Need to do alot of testing to have the green light from UKRA. Especially if we want to go
to MRC instead of SARA
o Have flight computer running and have hardware testing done by end of February

Actions for next meeting

+ Alex Monk to help Alex Posta for boards

e Ollie to do firmware if the boards do not arrive, and look at MATLAB translation into C with Sam.
There’s a library in Simulink but need to check it works properly

e Antoine needs to write the wind tunnel procedures and have them ready for after exams. And
start doing a draft design of the actuation system

e« Check actual data against the simulated data

e« Having next meeting on the 26" at 12pm

Supervisor sighature

oo/

66

Meeting number: 12 Date: 26/01/2024 Attendance: Alex Posta, Oliver,
Antoine
Agenda
s Updates
o Workshop situation
+ General testing procedures
« Wassim project updates
* Revise actions for next week

Progress since last meeting

Antoine:
s Canards are almost ready for testing. Will go to the workshop today to finalize the design and
start printing.

Alex Monk:
+ Received PCBs and ordered and receive filaments for custom antenna design

Oliver:
« Received PCBs
e Stencil is herel Just need to cut it at G68
e Look into servo drivers

Sam:
¢ No updates this week due to other commitments

Alex Posta:
¢ Improve on the web server, drivers for accelerometer/IMU, research hardware in the loop
testing

Key notes

o Don't solder in the new workshop. Should be done either in electronics lab or Ollie’s house.
o For WT testing, ask Antoine.

For Wassim
« we received 2 examples papers on Minerva
« talk about final report, next Tuesday at 1PM over Teams, anyone can join on the link:
https://teams.microsoft.com/l/meetup-
join/19%3ameeting YicSNGFIZGUIZMEOMSO00ONzhiLTk3YTIEN2YZzNzViIMmMZKY TIw%40thread.v
2/0?context=%7b%22Tid%22%3a%22bdeaeda8-c81d-45ce-§63e-
5232a535b7¢cb%22%2¢c%220id%22%32a%22{746f915-85b4-4cee-8456-4848428704d1%22%7d

Actions for next meeting

¢ Have common work sessions. Can go to the West Teaching Lab. Idea is to work together and
talk, not each on their own. Next working session should be after the meeting with Dr Kim
Jongrae.

« Have the weekly meetings at 10am/11am on Fridays.

Supervisor signature

Do/

67

Meeting number: 13 Date: 02/02/2024 | Attendance: Alex Posta, Qliver, Sam

Agenda

« Updates

e Airbus conference

¢ Launch situation

+ Revise actions for next week

Progress since last meeting

e Sam:
o Go through the control and install adds-on
e Oliver:

o Accelerometer, temp and IMU drivers’ updates
o Servo driver
e Alex Posta:
o Trytorun the MATLAB/Simulink simulation to get the controller into C

Key notes

e Trytorunthe control on MATLAB and realise there is not documentation in terms of what to
install, which file to start

Actions for next meeting

Sam:
* Create a list of Adds-On and documentation (instructions, flow-chart) for the control
+» Make sure the algorithm runs as last year

Oliver and Alex Posta:
e Continue working on firmware

Supervisor signature

pr—e

68

Attendance: Alex Posta, Alex Monk, Antoine Oliver,

Meeting number: 14 Date: 09/02/2024
Sam

Agenda

s Updates
e Look at part lists
¢ Launch Plan

Progress since last meeting

Sam
e Control: Simulation running, but only with certain OpenRocket data. Filtering and project
organisation ongoing

Alex Posta:
« Firmware: Debugging on the flight computer:
o SPltest and get it to work
o Read barometer data

Oliver:
+ Flight Computer: Board almost completely soldered, no obvious shorts so far

Antoine:
« Mechanical: Transmission design proposed

Key notes

e Servo transmission needs a chamfer, servo needs more secure attachment. Mounting system
shouldn't protrude outside rocket body.
o Suggested larger bearing / bearing removal and having the canard break on impact
instead.

e Forlaunch on 10" March:
o Barometer, accelerometer, IMU data recorded
o Initial control loop running with no direct output
o Data saving to NAND Flash
o Launch with simple antenna design.

Actions for next meeting

« Do a mouser order for missing components

+ Alex Posta wants to get accelerometer data reading out on flight computer, will move onto
hardware in the loop testing of Ollie’s board once MATLAB running

« Need to design a mounting system for flight computer and telemetry board
o Alex Monk and Ollie need to send Antoine CAD models for boards

Supervisor sighature

Do/

69

Meeting number: 15 Date: 16/02/2024 | Attendance: Alex Posta, Antoine, Oliver, Sam

Agenda
s Updates
+ Deadlines
e Launch Operations
e Purchasing

Progress since last meeting

e Control: Get the MATLAB script running, implement Kalman filter on the Barometer (input)

e Firmware: None

+ Flight Computer:
o Solder last parts (create soldering procedures) + create updates for future versions
o Create secondary part order

« Mechanical: Start designing the PCB support for the launch

o Telemetry: None

e Structure for individual report - Ollie

Key notes

e Launch Operations:
o Had a call with Paul from UKRA to ask if we can launch Pathfinder from MRC
o He seemed quite positive about it, but had the following requirements:
= Instead of going thorough TPS (Teams Project Support), we need to create a
Facebook chat with him, Andy, Chris and Collin + all Aptos team
= We need to send them documentation:
» OpenRocket Simulations, CAD, further details about mechanical spec,
servo motor spec (torque, movement, operating range) (list all parts,
dimensions in mm)
« Electronics, Firmware, Control, Telemetry overview
« Failsafe mechanisms (mechanical, electrical, especially control)
e Testing procedures
= They want metal geared servos
= We need to sign a waver (in case the rocket crashes and produces damage, it
will be out fault rather than UKRA)
+« For the mechanical side, focus more on the actual Aptos Launch rather than the 10™ of March
small academy rocket test launch

Actions for next meeting

e Set the general report structure and deadlines — Alex Posta

Supervisor sighature

Do/

70

Attendance: Alex Posta, Alex Monk, Antoine, Oliver,

Meeting number: 16 Date: 23/02/2024
Sam

Agenda

s Updates
e« Deadlines + Report
o Targets over the next 2 weeks

Progress since last meeting

Antoine:
+ Investigating new servos
Alex Monk:
e Usethe air holes (drill additional ones) to mount the antenna; started the CAD
« Started soldering components for telemetry
« Written C code to work with transmitter
s CAD the antennas for the Academy rocket
Ollie:
+ Firmware updates: SPI, sort out the delay function, system clock, watchdog running, LEDs,
buzzer, UART
Alex Posta:
e Check deadlines and documents that need submitting
o Get the MATLAB code running and start to look into hardware in the loop testing (HIL)
e« Get a serial output in MATLAB

Key notes

e« Cannot find servo, did not spec any servos
« Check deadlines document:
o Deadlines.docx
e Plan for the next 2 weeks:
o Finish Airbus presentation by the 27" of February (Tuesday)
o Get the Academy rocket ready for the 10" of March
o Finish poster between 11" - 13" of March

Actions for next meeting

« Friday:
o Antoine to search workshop, living and Toby’s room for servos
o Alex Posta put PowerPoint together for Airbus
« Sunday:
o If servos not found, Alex Posta and Antoine spec new servos
o Antoine should buy academy motor (38mm, some H)
o Ask Dom to launch it for us
Antoine:
« Send Alex Monk CAD of Academy rocket
Sam:
o Get the MATLAB control working in C

Supervisor signhature

Do/

71

Meeting number: 17 Date: 01/03/2024 | Attendance: Alex Posta, Alex Monk, Antoine, Oliver

Agenda
e Airbus brief
+ Updates

+ Work on the following week

Progress since last meeting

Antoine:
« Look into buying servo motor
e Look into rocket motors
Oliver:
s Code: get the barometer data on Aptos
s Get the IMU to spit data
Alex Monk:
« Nothing this week
Alex Posta:
+ Get the accelerometer data (in some form)
+ General code flow

Key notes

Airbus:
+« The propulsion was nice, we enjoyed the site. Enjoyed some of the talks. Rover arena wasn’t
very big, but still interesting.
« We are in a good position in terms of project compared to other teams. Quite happy to see our
projects

Launch:
+ Buy motor from the launch site. Add the | and J motors that we would like to launch with.
« Start the integration loop and write data to NAND Flash.
*» Get the telemetry stuff inside the rocket for the small launch inside the rocket and still be
approved by UKRA.
e Use PETR Gryphon as the rocket testing platform.

What frequency do we want to run the control to? 5-10 times closed loop bandwidth. 50Hz? They used
50ms time intervals for data reading, 10ms for gain updating.

Actions for next meeting

« We need a mounting solution/firmware development
e ToDo:
o Assembly ready for testing (Wednesday evening)
= Bracket printed
= Connection method to the rocket
o Firmware ready for testing (Wednesday evening)
= Accelerometer, IMU, barometer data
= Store and read off NAND/SD card
= Control converted to C
= |[nitial code flow routine
o Testing of assembly on (Thursday)

Supervisor signhature

i

72

Attendance: Alex Posta, Sam, Antoine, Oliver, Alex

Meeting number: 18 Date: 08/03/2024 Monk

Agenda

s Updates
e« Launch Prep

Progress since last meeting

Antoine:
« Designed the board cage for the first launch
+ Tried printing antenna for Alex Monk but had an issue, will try again.
Ollie:
« NAND flash code has been improved and test.
« Code written to get data off in CSV format.
Alex Monk:
e« Can see signals showing up from transmitter to receiver. Plans to attach barometer for the
launch
Alex Posta:
« Firmware. A lot of updates to the code.
« Overview of the structure and flow.
e Data from barometer and Accelerometer
+ Data buffer for the last 50 readings.

« Looked at generating C code.

Key notes

First launch will just be logging data not running any control code.
+ Software flow is nearly ready for first launch.
NAND flash is working
Discussion around the format of input data the control algorithm need.
Demo of telemetry progress
Next launch could be April 7' in Cambridge
Would we want to build up the second PCB
Paossibility of using university drones or Sam'’s drone to do testing.

Actions for next meeting

Oliver and Alex Posta:
s We need IMU driver complete for the control. Does IMU output angle or angular velocity
Sam:
e Check what is raw data needed in the control
« Conversion between CSV and open rocket data.
Alex Posta:
« Generate new frame array structure
Antoine:
« Print antenna & cage
Alex Monk:
« Details of all tests needed for the telemetry.
All:
¢ Meeting tomorrow 10am to complete assembly and procedures for the Sunday launch.
+ Think about integration between main board and telemetry
» Poster due on Wednesday.

Supervisor signature

Dopge i

73

Attendance: Alex Posta, Sam, Antoine, Oliver, Alex

Meeting number: 19 Date: 08/03/2024 Monk

Agenda

s Updates
s Launches

Progress since last meeting

Antoine:
« Wind Tunnel testing meeting with Sam. Going to be a few more weeks as they are testing a new
equipment. Need to put pressure on Sam to do it asap.
Ollie:
« Will work with Sam to get the code working and changes needed to adapt legacy code to our new
boards.
 Gyro data is pretty good.
» Accelerometer on the IMU is working.
Tried to figure an angle from the axis of gravity. However, it uses the arctan function, which needs
floating points that we don’t have. Gives an approximate, but not close enough.
Missing the BME280 and the servo drivers.
Needs to do servo driver, BME driver and arctan problem.
Might do low pass filters, but the data we get is good enough.
o Will check if the boards can fit horizontal in Aptos.
Alex Monk:
+ Tried to demodulate the signal, but there is a lot of noise. Maybe the data rate is not correct? Not
using an impedance match, so might have an impact.
« Need totry using a standard antenna to see if the problem isn’t his antenna.
¢ Once demodulation is done, need to find a way to automatically read the data coming from the
antenna. Need to copy the binary code from antenna into a .txt file before decoding by hand.
Alex Posta:
e Has been a bitill. Poster has been submitted
Sam:
e Looked at the formulas for MATLAB and went over the code from last year to see what needs to
be improved. Can'’t currently do floating points, which could be a problem for gains.
« Will work with Ollie to get the code working and changes needed to adapt legacy code to our new
boards.
« Legacy was doing comms using Bluetooth. Getting rid of it and coming with an alternative solution
to that.
« Need to work on servo drivers, and update controls from the Legacy.
+ Need toimplement changes of the updated Pathfinder to the simulations.

Key notes

* Servos are on their way to uni, and bushings are already here, waiting to be picked up.
 Launches:

o G2 team to do launch on the 14" of April from MRC.

o Can goto EARS on the 7" to do a test launch, do a small bottle test in the field?

o Test telemetry in a car?

o Can put it on a drone and fly it. Sam has a drone. Can test on Sam’s commercial drone.
« People will be back before the 14th, but not too sure how long before. Can go to Peak District on

the 5" to do testing.

Actions for next meeting

Supervisor signature

pr—e

74

Attendance: Alex Posta and M, Sam, Antoine, Oliver, Dr

Meeting number: 20 | Date: 08/03/2024 -
Jongrae Kim

Agenda

s Updates
e Ask questions about report

Progress since last meeting

e See previous table — Meeting on the same day as previous

Key notes

« Next meeting: Friday 3pm

¢ [If we want to reference the work of others, include a footnote with their names. Make sure
everything is transparent.

+ Pick a literature paper and use the style of that paper, general style. Common mistakes:
o Define acronyms (even 3D). Define when it first appears
o Abstract is independent from all the report, define acronyms twice if they appear there
o When you have formulas, define all variables under the equation. Examples when the
variables are. All symbaols need to be defined. If they appear after, it is ok
o For Figures: put AXIS names and UNITS
X axis is something... which axis is there? Even put them on the figure. X,y axis. Add
legend
Use |IEEE reference
Figure and tables must be refereed in text before they appear
If figure is big, put it over two columns
Formulas, everything needs to be defined

o]

o 0 0 0

Arxiv: Contains drafts papers https://arxiv.org/pdf/2311.11372.pdf

SERVOS: Antoine has two, Oliver has two

Actions for next meeting

Supervisor sighature

Do Vo

75

Meeting number: 21 Date: 22/03/2024 Attendance: Alex Posta, Alex M, Sam, Antoine, Oliver

Agenda

s Updates
+ Work to be done for next week

Progress since last meeting

Oliver:

+ Managed to make the servos move independently through the board. Need to test the accuracy.
The input gives the absolute position. The input is millidegrees. Can set the neutral position as
we want, for now it's been set in the middle of the 4000 available values. Needs more testing to
know which side is clockwise and anti-clockwise. Can be tested this weekend before Ollie
leaves

« Formatted the IMU driver for readability

« Set min and max angle functions. If input a value higher than the max angle, it shouldn't go
above the 157

+ Plugging in the servos uses the UART board. Which results in slowing down figuring out which
angle it is at

Alex Posta:
e« Converted the MATLAB control into C. At the moment it is pure maths, so no problems so far
e Created LQR controller
e Created matrix operations to translate matrices into coordinate systems
e Created a new Simulink model for the loop testing. Using serial blocks. Broke the control loop
and added some serial blocks
« Send the roll, pitch and yaw of rocket directly into code

Sam:
¢ Has not touched the gains. Added filters on the yaw and pitch angle, and added PI controller
« From OpenRocket you can take the pressure rate and plopped that into the Simulink, which is
more representative of how the speed of the rocket will be simulated

Antoine:
« Have all the parts ready for the first assembly test

Alex Monk:
+ Antenna works better! Still not perfect. Little demo of it
+ Have not just noise, but peaks showing the bits. There is a lot of reflection
» However, it's not centred around 433 MHz. It is not calibrated properly
* Also has a demodulator for it

Key notes

+ Try to test the module while spinning
« Telemetry needs a better antenna
o The current one is not good, so going to buy the one he needs on eBay
« Aptos boards don't fit inside the Aptos Module. Mount needs to be redesigned to have it vertical.
Can use the old mount that was meant for Petr Griffin (Academy small rocket)
» The gyroscope drifts over time. Can be offset from the get-go by looking at the standard deviation,
and also look at the accelerometer data to know where the gravity field is pointing towards

76

Actions for next meeting

Oliver:
« Verify the servo positions before leaving
Alex Posta:
« Get Ollie’'s code working to see the canards moving
e Test the controller on microprocessor, and using the loop in Simulink
*» Get floating point to work
Sam:
« Need to check that modifications make sense, and are the correct representation of how it will
be simulated. More testing and experiments
Antoine:
« Need to finish prepping all the parts and assemble them together. Will be done by Sunday
morning
+ Need to find an alternative for the wind tunnel. (IPSA? Need to ask one of his old teachers.)
Alex Monk:
* Get the oscillator going. Take out all the wrong decode/noise data
« Modify the PCBdesign
« Buy anew antenna

Supervisor signature

oo/

77

Meeting number: 22 | Date: 22/03/2024

Attendance: Alex Posta, Alex Monk, Sam, Antoine, Oliver,
Dr Kim Jongrae

Agenda

Updates
Questions about report

Progress since last meeting

See previous table

Key notes

Need more specific titles/more details for the chapters. Have to have a specific font and size.
Do not use webpages as reference unless it is the only source

Do not use excuses such as “time limitations...”, “budget...”

We should add a section about the rocket launch

Questions

Do we need to have the same title?
o No need for the same title for the individual report. Add the main title it as a subtitle under
your individual title

How do you add and reference code?

o If you have a code snippet, add it as a figure. You do not need to add a reference to your
own code. Make it clear if you took inspiration from somewhere. Add a link to GitHub, we
do not have to make it public, add a footnote that says that code is not public and give
access key or something

Table of components with features for each component (all evaluation come from different sources)
o You basically need to add references for all of those difference. Or, if you reference Mouser
in multiple locations, add link to Mouser and say (see price on Mouser)

If you made modifications, new versions
o Tell the “story”. In an engineering report, you need to show off all of the process. That is
one of the most important points in the report

Should we use the ECSS standard?
o Would be good to use standards, find improvements for next phase. We need to explain
what those are before we use them. Take all documents as separate

Is he locking for a specific structure for the chapters?
o No

How much can he review our reports? Is it only one page or the whole report?
o 20% of each report can be send for review. We can approach other academic as well for
review.

Do we need to post it on LinkedIn/post the screenshot of the LinkedIn post?
o | donot know... maybe required, but not marked. Probably yes.

How many references is he expecting?
o 20-30 references. Include majority of them from journal papers. Single space, smaller font.

Supervisor signature

Doppar e

78

Attendance: Alex Posta, Alex Monk, Sam, Antoine,
Oliver

Meeting number: 23 | Date: 05/04/2024

Agenda

s Updates
« Drone and car tests
e Launch Operations

Progress since last meeting

Antoine:
+ 3D printed the model of the drone support
+ Got the data off the wind tunnel in France
o Stationary canards with different angles of attack (from 0 degrees to 15 degrees)
o Increase the wind speeds by increments of 5m/s up to 40m/s
« Redesigned the transmission system of the Aptos module; currently the canards are not
attached properly to the servos

Alex Monk:
« Telemetry is not ideal; mostly working in the past as it transmits data; but frequency shifts
every time when you turn it on

o The oscillator was 4MHz instead of 40Mhz

o A new oscillator was fit, registers are read correctly, but still does not get the
frequency right => prob because the voltage input is not stable enough (it is not
stable from Teensy/Power Supply/AAA Batteries), you get a drop in voltage when the
current is drawn for the transmission => get a circuit to speed up the voltage set

= Order a voltage regulator and some regulators

Sam:
+ Look into Kalman filter between accelerometer and gyroscope to stop the gyro drift in
midflight. Keep this for his report

Oliver:
« Further developed the servo driver; got the input as millidegrees
« Initial orientation of the board is worked out using the accelerometer; therefore, board can be
initialized on the pad rather than ground
o Due to the gyroscope reading; initially gyro was calibrated by lying on flat ground, but
we cannot do that on a field.
o Additionally, when rocket is stationary, remove the gyro drift using the acceleration
data (if stationary the acceleration should reveal the orientation of the rocket on pad).
e Currently working on the update of the orientation based on accelerometer
« Tryto setthe servos to the orientation of the board to see if the Euler angles work, some
issue with the char pointer

Alex Posta:
¢ Check the controller code from C that was translate from MATLAB using the hardware:
faced multiple issue with the way in which the data was passed from one function to others;
the gyroscope data was not calibrating after a time; the servo deflections were not correct
angles; look at the servo transmission mechanism->canards are not attached properly
o Solve the C pass by reference issues in various functions.
o Got to the point in which the orientation function outputs some Euler angles and they
are passed on the controller to receive servo deflections.
o The servo deflections react to yaw/pitch but did not conclude whether the output is
correct or not.
+ Change the frameArray structure to reflect the new sensors.
o FrameArray contains a maximum of 128 bytes
o Included the majority of the sensors + Euler angle and rates
o Need to talk to Ollie to confirm that structure is what is needed; Sam also mentioned
two additional variables that he needs

79

Key notes

« For Antoine, try to get a mathematical equation for the canards; would be extremely beneficial
for the controller in the future

« For Alex Monk, get a voltage regulator fitted; regulator arrives tomorrow (Amazon), another
one comes on Monday (Mouser)

« Sam: give us a csv file of the Euler angle / rates / velocity / altitude

+ Alex Posta: get the velocity out of barometer; change the NAND flash

e Servo 1 works as long as you use it with ID 1 instead of 101

e For csv printing, do not use the equal sign; talk further about the NAND Flash storing
procedure (Alex Posta + Ollie)

+ Extra 96 bits available on the NAND Flash: Sam needs two values for Roll and Pitch

* Alex needs SPI1 (for telemetry) in mode 0

e Canard deflections: bump them to int16 and change the orientation to use the struct instead
of the chart; store it in millidegrees

Actions for next meeting

Drone test:
¢ Tryto do adrone test on Wednesday.
o If system does not look good, do further drone testing the week after the 14t
o if weather does not improve by Tuesday, decide whether we want to do the launch
« Total payload test: approx. 500g
o If needed; fly the telemetry assembly separate from the avionics
Tuesday meeting:
e 6:30pm Tuesday; decide what to do this week.

Supervisor signature

Doppers

80

Meeting number: 24 | Date: 19/04/2024 Attendance: Oliver, Antoine, Alex Posta

Agenda

s Updates

+ Report structure

+ Split sections to write for group report
+ Next week plan

Progress since last meeting

All:
« We launched a rocket!!!
« Attempt a drone test, unsuccessful

Oliver + Alex Posta:
e Eliminated gyro drift using accelerometer data
e Getthe LQR to work when board was setup on the table and then reorientate axis of gyro for
vertical velocity
e Optimise code running to get the main at 100Hz and faster
Redesign flight loop: add buzzers, LEDs, trigger between flight stages slightly differently to make
them more consistent

+ Update vertical velocity calculation and check for landing using gyro data
¢ Vacuum chamber testing
« Get data off Flight computer after launch
e Change db and web structure to reflect the new frameArray
Antoine:

« Printed the PCB mount

Reprint the servo mount, test fit and assembly

Added slots for bushings and glued them in place

Ran OpenRocket Simulations with the new weighted parts
Look at mathematical model of the canards

Looked at the wind tunnel data

Key notes

12 15 16 17 18 ® 20

Less than 2 weeks to submit

See group word document for section splits

Do final tests on Monday: run another vacuum test, try to do a drone test. Telemetry?

Meet on Wednesday, the 24", to check first draft of all sections for group report; meet at 2pm
Late long meeting on the 30™ of April to submit the group report

Actions for next meeting

o Write report

Supervisor signature

Do Vo

81

Attendance: Oliver, Antoine, Alex Posta, Alex Monk,

Meeting number: 25 | Date: 26/04/2024

Sam
Agenda
s Updates
s Check meeting log
+ Report
o Website/LinkedIn

Progress since last meeting

All:
» Work on report
Alex Monk:
¢ Two more iterations of the transceiver board; amazon oscillator did not oscillate at the correct
rate; had to resolder new ones
o Connect reset pins to incorrect voltage, resolder new board
o Board goes into transmit mode, regulators work, does calibration and power amplifier
o Antennas are printers, run tests

Ollie:
« Did a drone test and looked at results, had multiple issues: barometer is affected by prop wash,
accelerometer and gyro faced too many vibrations; would be worth adding extra filters
« Found a prone app that works at 100Hz that does accelerometer, gyro and crientation (does
quaternions into Euler, exactly as us); match the phone test to the flight computer: Sensor
Logger

Alex Posta
« Small test bench for the database ingestion rate

Key notes

e Look through meeting logs and send them for checking

Actions for next meeting

Supervisor sighature

Doppars/

82

	List of Figures
	Nomenclature
	Abstract
	Chapter 1. Introduction
	1.1 Introduction
	1.2 Individual Project Aim
	1.3 Individual Project Objectives

	Chapter 2. Background and Literature Review
	2.1 Background
	2.2 Literature Review

	Chapter 3. Firmware Development
	3.1 Introduction
	3.2 Firmware Setup
	3.3 Flashing Methodology
	3.4 Firmware Development
	3.5 Firmware Testing

	Chapter 4. Data Processing and Storage
	4.1 Introduction
	4.2 Data Storage Comparison
	4.3 Data Storage Architecture

	Chapter 5. Data visualisation
	5.1 Introduction
	5.2 Backend Framework Selection
	5.3 Framework Development
	5.4 LURA Dash Features

	Chapter 6. Pipeline Integration
	6.1 Introduction
	6.2 Pipeline Discussion and Results
	6.2.1 Pipeline Throughput
	6.2.2 Storage Capabilities
	6.2.3 Cloud Hosting Implications
	6.2.4 Adaptability

	Chapter 7. Conclusion and Future Work
	7.1 Achievements
	7.2 Conclusion
	7.3 Future Work

	References
	Appendix A – Firmware Flowchart
	Appendix B – Dashboard GitHub README file
	Appendix C – Controller Transition from MATLAB to C
	Appendix D – Firmware Setup
	Appendix E – Database structure
	Appendix F – MATLAB Input Format Equations
	Appendix G – CPP
	Appendix H – Meeting logs

